THE PROGRAMMER’S
CP/M°* HANDBOOK

Andy Johnson-Laird

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to Osborne/McGraw-Hill at the above address.

CP/M is a registered trademark of Digital Research, Inc.

CP/M-86, MP/M-86, and MP/M 1I are trademarks of
Digital Research, Inc.

Z80 is a registered trademark of Zilog, Inc.

THE PROGRAMMER'S CP/M® HANDBOOK

Copyright ©1983 by Osborne/McGraw-Hill. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

1234567890 DODO 89876543

ISBN 0-88134-103-7 (Paperback Edition)
ISBN 0-88134-119-3 (Hardcover Edition)
Mary Borchers, Acquisitions Editor
Ralph Baumgartner, Technical Editor
Susan Schwartz, Copy Editor

Judy Wohlfrom, Text Design

Yashi Okita, Cover Design

MMC“) b

THE PROGRAMMER’S
CP/M° HANDBOOK

Dedication

Several years ago I was told that “Perfection is an English education, an
American salary, and a Japanese wife.”

Accordingly, I wish to thank the members of Staff at Culford School in
England, who gave me the English education, the people who work with me at
Johnson-Laird Inc. and Control-C Software and our clients, who give me my
American salary, and Mr. and Mrs. Kitagawa, who gave me Kay Kitagawa (who
not only married me but took over where my English grammar left off).

A.J-L.

Acknowledgments

Although this book is not authorized or endorsed by Digital Research, I would
like to express my thanks to Gary Kildall and Kathy Strutynski of Digital
Research, and to Phil Nelson (formerly of Digital Research, now of Victor Tech-
nology) for their help in keeping me on the path to truth in this book. I would also
like to thank Denise Penrose, Marty McNiff, Mary Borchers, and Ralph Baum-
gartner at Osborne/ McGraw-Hill for their apparently inexhaustible patience.

AJ-L.

Contents

O VOoONOCODBLWLNN~

1

Introduction 1

The Structure of CP/M 5

The CP/M File System 17

The Console Command Processor (CCP) 45
The BASIC Disk Operating System 67
The BASIC Input/Output System 147
Building a New CP/M System 183
Writing an Enhanced BIOS 209
Dealing with Hardware Errors 295
Debugging a New CP/M System 319
Additional Utility Programs 371

Error Messages 449

ASCII Character Set 465

CP/M Command Summary 469
Summary of BDOS Calls 479
Summary of BIOS Calls 485

Index 487

Quthine of Contents
Notation
Example Programs on Diskette

Infroduction

This book is a sequel to the Osborne CP/M® User Guide by Thom Hogan. It is
a technical book written mainly for programmers who require a thorough knowl-
edge of the internal structure of CP/M —how the various pieces of CP/M work,
how to use CP/M as an operating system, and finally, how to implement CP/M on
different computer systems. This book is written for people who

- Have been working with microcomputers that run Digital Research’s CP/M
operating system.

- Understand the internals of the microprocessor world — bits, bytes, ports,
RAM, ROM, and other jargon of the programmer.

- Know how to write in assembly language for the Intel 8080 or Zilog Z80
Central Processing Unit (CPU) chips.

If you don't have this kind of background, start by getting practical experience
on a system running CP/M and by reading the following books from Osborne/
McGraw-Hill: ‘

+ An Introduction to Microcomputers: Volume 1— Basic Concepts
This book describes the fundamental concepts and facts that you need to

1

2 The CP/M Programmer’s Handbook

know about microprocessors in order to program them. If you really need
basics, there is a Volume 0 called The Beginner’s Book.

- 8080A4/8085 Assembly Language Programming
This book covers all aspects of writing programs in 8080 assembly language,
giving many examples.

* Osborne CP/M® User Guide (2nd Edition)
This book introduces the CP/M operating system. It tells you how to use
CP/M as a tool to get things done on a computer.

The book you are reading now deals only with CP/M Version 2.2 for the 8080
or Z80 chips. At the time of writing, new versions of CP/M and MP/M (the
multi-user, multi-tasking successor to CP/M) were becoming available. CP/M-86
and MP/M-86 for the Intel 8086 CPU chip and MP/M-II for the 8080 or Z80 chips
had been released, with CP/M 3.0 (8080 or Z80) in the wings. The 8086, although
related architecturally to the 8080, is different enough to make it impossible to
cover in detail in this book; and while MP/M-II and MP/M-86 are similar to
CP/M, they have many aspects that cannot be adequately discussed within the
scope of this book.

Outline of Contents

This book explains topics as if you were starting from the top of a pyramid.
Successive “slices” down the pyramid cover the same material but give more detail.

The first chapter includes a brief outline of the notation used in this book for
example programs written in Intel 8080 assembly language and in the C pro-
gramming language.

Chapter 2 deals with the structure of CP/M, describing its major parts, their
positions in memory, and their functions.

Chapter 3 discusses CP/M’s file system in as much detail as possible, given its
proprietary nature. The directory entry, disk parameter block, and file organiza-
tion are described.

Chapter 4 covers the Console Command Processor (CCP), examining the way
in which you enter command lines, the CP/M commands built into the CCP, how
the CCP loads programs, and how it transfers control to these programs.

Chapter 5 begins the programming section. It deals with the system calls your
programs can make to the high-level part of CP/M, the Basic Disk Operating
System (BDOS).

Chapters 6 through 10 deal with the Basic Input/Output System (BIOS). This is
the part of CP/M that is unique to each computer system. It is the part that youasa
programmer will write and implement for your own computer system.

Chapter 6 describes a standard implementation of the BIOS.

Chapter 1: Introduction 3

Chapter 7 describes the mechanism for rebuilding CP/M for a different
configuration.

Chapter 8 tells you how to write an enhanced BIOS.

Chapter 9 takes a close look at how to handle hardware errors—how to detect
and deal with them, and how to make this task easier for the person using the
computer.

Chapter 10 discusses the problems you may face when you try to debug your
BIOS code. It includes debugging subroutines and describes techniques that will
save you time and suffering.

Chapter 11 describes several utility programs, some that work with the features
of the enhanced BIOS in Chapter 8 and some that will work with all CP/M 2
implementations.

Chapter 12 concerns error messages and some oddities that you will discover,
sometimes painfully, in CP/M. Messages are explained and some probable causes
for strange results are documented.

The appendixes contain “ready-reference” information and summaries of
information that you need at your side when designing, coding, and testing
programs to run under CP/M or your own BIOS routines.

Notation

When you program your computer, you will be sitting in front of your terminal
interacting with CP/M and the utility programs that run under it. The sections that
follow describe the notation used to represent the dialog that will appear on your
terminal and the output that will appear on your printer.

Console Dialog
This book follows the conventions used in the Osborne CP/M User Guide,
extended slightly to handle more complex dialogs. In this book

+ <name> means the ASCII character named between the angle brackets, <<
and>. For example, <BEL>> is the ASCII Bell character,and<<HT>>is the
ASCII Horizontal Tab Character. (Refer to Appendix A for the complete
ASCII character set.)

+ <cr> means to press the CARRIAGE RETURN key.
123 or a number without a suffix means a decimal number.
100B or a number followed by B means a binary number.

+ 0AS5H or a number followed by H means a hexadecimal number. A hexa-
decimal number starting with a letter is usually shown with a leading 0 to
avoid confusion.

4 The CP/M Programmer’s Handbook

+ ~x means to hold the CONTROL (CTRL) key down while pressing the x key.

- Underline is keyboard input you type. Output from the computer is shown
without underlining.

Assembly Language Program Examples

This book uses Intel 8080 mnemonics throughout as a “lowest common
denominator”—the Z80 CPU contains features absent in the 8080, but not vice
versa. Output from Digital Research’s ASM Assembler is shown so that you can
see the generated object code as well as the source.

High-Level Language Examples

The utility programs described in Chapter 11 are writtenin C, a programming
language which lends itself to describing algorithms clearly without becoming
entangled in linguistic bureaucracy. Cryptic expressions have been avoided in
favor of those that most clearly show how to solve the problem. Ample comments
explain the code.

An excellent book for those who do not know how to program in Cis The C
Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall).
Appendix A of this book is the C Reference Manual.

Example Programs on Diskette

Example programs in this book have been assembled with ASM and tested
with DDT, Digital Research’s Dynamic Debugging Tool. C examples were com-
piled using Leor Zolman’s BDS C Compiler (Version 1.50) and tested using the
enhanced BIOS described in Chapter 8.

All of the source code shown in this book is available on a single-sided,
single-density, 8-inch diskette (IBM 3740 format). Please do not contact Osborne/
McGraw-Hill to order this diskette. Call or write

Johnson-Laird, Inc.
Attn: The CP/M Programmer’s Handbook Diskette
6441 SW Canyon Court
Portland, OR 97221
Tel: (503) 292-6330

The diskette is available for $50 plus shipping costs.

CP/M from Digital Research
The Pieces of CP/M
CP/M Diskette Format
Loading CP/M
Console Command Processor
Basic Disk Operating System
Basic Input/Output System
CCP, BDOS, and BIOS
Interactions

The Structure
of CP/M

This chapter introduces the pieces that make up CP/M —what they are and
what they do. This bird’s-eye view of CP/M will establish a framework to which
later chapters will add more detailed information.

You may have purchased the standard version of CP/M directly from Digital
Research, but it is more likely you received CP/M when you bought your micro-
processor system or its disk drive system. Or, you may have purchased CP/M
separately from a software distributor. In any case, this distributor or the com-
pany that made the system or disk drive will have already modified the standard
version of CP/M to work on your specific hardware, Most manufacturers’ ver-
sions of CP/M have more files on their system diskette than are described here for
the standard Digital Research release.

Some manufacturers have rewritten all the documentation so that you may not
have received any Digital Research CP/M manuals. If this is the case, you should
order the complete set from Digital Research, because as a programmer, you will
need to have them for reference.

5

6 The CP/M Programmer’s Handbook

CP/M from Digital Research

Digital Research provides a standard “vanilla-flavored” version of CP/M that
will run only on the Intel Microcomputer Development System (MDS). The
CP/M package from Digital Research contains seven manuals and an 8-inch,
single-sided, single-density standard IBM 3740 format diskette.

The following manuals come with this CP/M system:

 An Introduction to CP/M Features and Facilities. This is a brief description
of CP/M and the utility programs you will find on the diskette. It describes
only CP/M version 1.4,

+ CP/M 2.0 User’s Guide. Digital Research wrote this manual to describe the
new features of CP/M 2.0 and the extensions made to existing CP/M 1.4
features.

- ED: A Context Editor for the CP/M Disk System. By today’s standards, ED
is a primitive line editor, but you can still use it to make changes to files
containing ASCII text, such as the BIOS source code.

+ CP/M Assembler (ASM). ASM is a simple but fast assembler that can be
used to translate the BIOS source code on the diskette into machine code.
Since ASM is only a bare-bones assembler, many programmers now use its
successor, MAC (also from Digital Research).

+ CP/M Dynamic Debugging Tool (DDT). DDT is an extremely useful pro-
gram that allows you to load programs in machine code form and then test
them, executing the program either one machine instruction at a time or
stopping only when the CPU reaches a specific point in the program.

« CPIM Alteration Guide. There are two manuals with this title, one for CP/M
version 1.4 and the other for 2.0. Both manuals describe, somewhat crypti-
cally, how to modify CP/M.

- CPIM Interface Guide. Again, there are two versions, 1.4 and 2.0. These
manuals tell you how to write programs that communicate directly with
CP/M.

The diskette supplied by Digital Research has the following files:

ASM.COM
The CP/M assembler.

BIOS.ASM
A source code file containing a sample BIOS for the Intel Microcomputer
Development System (MDS). Unless you have the MDS, this file is useful
only as an example of a BIOS.

Chapter 2: The Structure of CP/M 7

CBIOS.ASM
Another source code file for a BIOS. This one is skeletal: There are gaps so
that you can insert code for your computer.

DDT.COM
The Dynamic Debugging Tool program.

DEBLOCK.ASM
A source code file that you will need to use in the BIOS if your computer
uses sector sizes other than 128 bytes. It is an example of how to block and
deblock 128-byte sectors to and from the sector size you need.

DISKDEF.LIB
A library of source text that you will use if you have a copy of Digital
Research’s advanced assembler, MAC.

DUMPASM
The source for an example program. DUMP reads a CP/M disk file and
displays it in hexadecimal form on the console.

DUMP.COM
The actual executable program derived from DUMP.ASM.

ED.COM
The source file editor.

LOAD.COM
A program that takes the machine code file output by the assembler, ASM,
and creates another file with the data rearranged so that you can execute
the program by just typing its name on the keyboard.

MOVCPM.COM
A program that creates versions of CP/M for different memory sizes.

PIP.COM
A program for copying information from one place to another (PIP is
short for Peripheral Interchange Program).

STAT.COM
A program that displays statistics about the CP/M and other information
that you have stored on disks.

SUBMIT.COM
A program that you use to enter CP/M commands automatically. It helps
you avoid repeated typing of long command sequences.

SYSGEN.COM
A program that writes CP/M onto diskettes.

XSUB.COM
Anextended version of the SUBMIT program. The files named previously

8 The CP/M Programmer’s Handbook

fall into two groups: One group is used only to rebuild CP/M, while the
other set is general-purpose programming tools.

The Pieces of CP/M

CP/M is composed of the Basic Disk Operating System (BDOS), the Console
Command Processor (CCP), and the Basic Input/Output System (BIOS).

On occasion you will see réferences in CP/M maniials to something called the
FDOS, which stands for “Floppy Disk Operating System.” This name is given to
the portion of CP/M cbnsisting of both the BDOS and BIOS and is a relic passed
down from the original version. Since it is rarely necessary to refer to the BDOS
and the BIOS combined as a single entity, no further references to the FDOS will
be made in this book.

The BDOS and the CCP are the proprietary parts of CP/M. Unless you are
willing to pay several thousand dollars, you cannot get the source code for them.
You do not need to. CP/M is designed so that all of the code that varies from one
machine to another is contained in the BIOS, and you do get the BIOS source code
from Digital Research. Several companies make specialized BIOSs for different
computer systems. In many cases they, as well as some CP/M hardware manufac-
turers, do not make the source code for their BIOS available; they have put time
and effort into building their BIOS, and they wish to preserve the proprietary
nature of what they have done.

You may have to build a special configuration of CP/M for a specific computer.
This involves no more than the following four steps:

1. Make a version of the BDOS and CCP for the memory size of your
computer.

2. Write a modified version of the BIOS that matches the hardware in your
computer.

3. Write a small program to load CP/M into memory when you press the
RESET button on your computer.

4. Join all of the pieces together and write them out to a diskette.

These steps will be explained in Chapters 7, 8, and 9.

In the third step, you write a small program that loads CP/M into memory
when you press the RESET button on your computer. This program is normally
called the bootstrap loader. You may also see it called the “boot” or even the “cold
start”loader. “Bootstrap” refers to the idea that when the computer is first turned
on, there is no program to execute. The task of getting that very first program into
the computer is, conceptually, as difficult as attempting to pick yourself up off the
ground by pulling on your own bootstraps. In the early days of computing, this
operation was performed by entering instructions manually—setting large banks

Chapter 2: The Structure of CP/M 9

of switches (the computer was built to read the switches as soon as it was turned
on). Today, microcomputers contain some small fragment of a program in “non-
volatile” read-only memory (ROM)— memory that retains data when the com-
puter is turned off. This stored program, usually a Programmable Read Only
Memory (PROM) chip, can load your bootstrap program, which in turn loads
CP/M.

CP/M Diskefte Format

The standard version of CP/M is formatted on an 8-inch, single-sided diskette.
Diskettes other than this type will probably have different layouts; hard disks
definitely will be different.

The physical format of the standard 8-inch diskette is shown in Figure 2-1. The

Index Hole
(Marks Sector 1)

Central Hole

Track 76

—
g
/-'

10

Floppy Medium

Track 0

Sector 26

Sector 1

Figure 2-4. Floppy disk layout

10 The CP/M Programmer’s Handbook

Sector Track 0 Track 1
1 Bootstrap Loader
———————— -1
2
3
4
5
6
7 C I Basic Disk
8 onsole Operating
9 Command System
10 Processor
(BDOS)
1 (CCP) (Last Part)
12
13
14
15
16
17 +___3 | 4
18
v L___A } _____
2 Basic Disk i
(0] ti .
no | Opmine | b
t; tput
" (BDOS) st
2 (First Part) (BIOS)
26

Figure 2-2. Layout of CP/M on tracks 0 and 1 of floppy disk

diskette has a total of 77 concentric tracks numbered from zero (the outermost) to
76 (the innermost). Each of these tracks is divided radially into 26 sectors. These
physical sectors are numbered from 1 to 26; physical sector zero does not exist.
Each sector has enough space for 128 bytes of data.

Even when CP/M is implemented on a large hard disk with much larger sector
sizes, it still works with 128-byte sectors. The BIOS has extra instructions that
convert the real sectors into CP/M-style 128-byte sectors.

A final note on physical format: The soft-sectored, single-sided, single-density,
8-inch diskette (IBM 3740 format) is the only standard format. Any other formats
will be unique to the hardware manufacturer that uses them. It is unlikely that you
canread a diskette on one manufacturer’s computer if it was written on another’s,
even though the formats appear to be the same. For example, a single-sided,
double-density diskette written on an Intel Development System cannot be read
on a Digital Microsystems computer even though both use double-density format.
If you want to move data from one computer to another, use 8-inch, single-sided,
single-density format diskettes, and it should work.

Chapter 2: The Structure of CPM 14

In order to see how CP/M is stored on a diskette, consider the first two tracks
on the diskette, track 0 and track 1. Figure 2-2 shows how the data is stored on
these tracks.

Loading CP/M

The events that occur after you first switch on your computer and put the
CP/M diskette into a disk drive are the same as those that occur when you press the
RESET button — the computer generates a RESET signal.

The RESET button stops the central processor unit (CPU). All of the internals
of the CPU are set to an initial state, and all the registers are cleared to zero. The
program counter is also cleared to zero so that when the RESET signal goes away
(it only lasts for a few milliseconds), the CPU starts executing instructions at
location 0000H in memory.

Memory chips, when they first receive power, cannot be relied upon to contain
any particular value. Therefore, hardware designers arrange for some initial
instructions to be forced into memory at location 0000H and onward. It is this feat
that is like pulling yourself up by your own bootstraps. How can you make the
computer obey a particular instruction when there is “nothing” (of any sensible
value) inside the machine?

There are two common techniques for placing preliminary instructions into
memory:

Force-feeding

With this approach, the hardware engineer assumes that when the RESET
signal is applied, some part of the computer system, typically the floppy
disk controller, can masquerade as memory. Just before the CPU is un-
leashed, the floppy disk controller will take control of the computer system
and copy a small program into memory at location 0000H and upward.
Then the CPU is allowed to start executing instructions at location 0000 H.
The disk controller preserves the instructions even when power is off
because they are stored in nonvolatile PROM-based firmware. These
instructions make the disk controller read the first sector of the first track
of the system diskette into memory and then transfer control to it.

Shadow ROM

This is a variation of the force-feeding technique. The hardware manu-
facturer arranges some ROM at location 0000H. There is also some
normal read/write memory at location 0000H, but this is electronically
disabled when the RESET signal has been activated. The CPU, unleashed
at location 0000H, starts to execute the ROM instruction. The first act of
the ROM program is to copy itself into read/write memory at some
convenient location higher up in memory and transfer control of the
machine up to this copy. Then the real memory at location 0000H can be
turned on, the ROM turned off, and the first sector on the disk read in.

12 The CP/M Programmer’s Handbook

With either technique, the result is the same. The first sector of the disk is read
into memory and control is transferred to the first instruction contained in the
sector.

This first sector contains the main CP/M bootstrap program. This program
initializes some aspects of the hardware and then reads in the remainder of track 0
and most of the sectors on track 1 (the exact number depends on the overall length
of the BIOS itself). The CP/M bootstrap program will contain only the most
primitive diskette error handling, trying to read the disk over and over again if the
hardware indicates that it is having problems reading a sector.

The bootstrap program loads CP/M to the correct place in memory; the load
address is a constant in the bootstrap. If you need to build a version of CP/M that
uses more memory, you will need to change this load address inside the bootstrap
as well as the address to which the bootstrap will jump when all of CP/M has been
read in. This address too is a constant in the bootstrap program.

The bootstrap program transfers control to the first instruction in the BIOS,
the cold boot entry point. “Cold” implies that the operation is starting cold from
an empty computer.

The cold boot code in the BIOS will set up the hardware in your computer.
That is, it programs the various chips that control the speed at which serial ports
transmit and receive data. It initializes the serial port chips themselves and
generally readies the computer system. Its final act is to transfer control to the first
instruction in the BDOS in order to start up CP/M proper.

Once the BDOS receives control, it initializes itself, scans the file directory on
the system diskette, and hands over control to the CCP. The CCP then outputs the
“A>”prompt to the console and waits for you to enter a command. CP/M is then
ready to do your bidding.

At this point, it is worthwhile to review which CP/M parts are in memory,
where in memory they are, and what functions they perform.

This overview will look at memory first. Figure 2-3 shows the positions in
memory of the Console Command Processor, the Basic Disk Operating System,
and the Basic Input/Output System.

By touching upon these major memory components —the CCP, BDOS, and
BIOS —this discussion will consider which modules interact with them, how
requests for action are passed to them, and what functions they can perform.

Console Command Processor

As you can see in Figure 2-3, the CCP is the first part of CP/M that is
encountered going “up” through memory addresses. This is significant when you
consider that the CCP is only necessary in between programs. When CP/M isidle,
it needs the CCP to interact with you, to accept your next command. Once CP/M
has started to execute the command, the CCP is redundant; any console interac-
tion will be handled by the program you are running rather than by the CCP.

Chapter 2: The Structure of CPM 43

Locations in Locations in
Hexadecimal Decimal
FFFFH~» -65535
Basic Input/Output System’
(BIOS)
FCROH b m e e e e 464640

Basic Disk Operating System

(BDOS)

B680H ~= & i Command Processor |~ 008
(CCP

DE8OH) 56960

A Memory Available for A
v Programs v

0100H 256

CP/M Re:
0000H-~ / served Area 0

Figure 2-3.

Memory layout with CP/M loaded

Therefore, the CCP leads a very jerky existence in memory. It is loaded when you
first start CP/M. When you ask CP/M, via the CCP, to execute a program, this
program can overwrite the CCP and use the memory occupied by the CCP for its
own purposes. When the program you asked for has finished, CP/M needs to
reload the CCP, now ready for its interaction with you. This process of reloading
the CCP is known as a warm boot. In contrast with the cold boot mentioned
before, the warm boot is not a complete “start from cold”; it’s just a reloading of
the CCP. The BDOS and BIOS are not touched.

How does a program tell CP/M that it has finished and that a warm boot must
be executed? By jumping to location 0000 H. While the BIOS was initializing itself
during the cold boot routine, it put an instruction at location 0000H to jump to the
warm boot routine, which is also in the BIOS. Once the BIOS warm boot routine

14 The CP/M Programmer’s Handbook

has reloaded the CCP from the disk, it will transfer control to the CCP. (The cold
and warm boot routines are discussed further in Chapter 6.)

This brief description indicates that every command you enter causes a pro-
gram to be loaded, the CCP to be overwritten, the program to run, and the CCP to
be reloaded when the program jumps to location 0000H on completing its task.
This is not completely true. Some frequently needed commands reside in the CCP.
Using one of these commands means that CP/M does not have to load anything
from a diskette; the programs are already in memory as part of the CCP. These
commands, known as “intrinsic” or “resident” commands, are listed here with a
brief description of what they do. (All of them are described more thoroughly in
Chapter 4.) The “resident” commands are

DIR Displays which files are on a diskette

ERA Erases files from a diskette

REN Changes the names of files on diskette

TYPE Displays the contents of text files on the console
SAVE Saves some of memory as a file on diskette

USER Changes User File Group.

Basic Disk Operating System

The BDOS is the heart of CP/M. The CCP and all of the programs that you run
under CP/M talk to the BDOS for all their outside contacts. The BDOS performs
such tasks as console input/ output, printer output, and file management (creating,
deleting, and renaming files and reading and writing sectors).

The BDOS performs all of these things in a rather detached way. It is con-
cerned only with the logical tasks at hand rather than the detailed action of getting
a sector from a diskette into memory, for example. These “low-level” operations
are done by the BDOS in conjunction with the BIOS.

But how does a program work with the BDOS? By another strategically placed
jump instruction in memory. Remember that the cold boot placed the jump to the
BIOS warm boot routine in location 0000H. At location 0005H, it puts a jump
instruction that transfers control up to the first instruction of the BDOS. Thus,
any program that transfers control to location 0005H will find its way into the
BDOS. Typically, programs make a CALL instruction to location 0005H so that
once the BDOS has performed the task at hand, it can return to the calling
program at the correct place. The program enlisting the BDOS’s help puts special
values into several of the CPU registers before it makes the call to location 0005H.
These values tell the BDOS what operation is required and the other values needed
for the specific operation.

Chapter 2: The Structure of CP/M 15

Basic Input/Output System

As mentioned before, the BDOS deals with the input and output of informa-
tion in a detached way, unencumbered by the physical details of the computer
hardware. It is the BIOS that communicates directly with the hardware, the ports,
and the peripheral devices wired to them.

This separation of logical input/output in the BDOS from the physical input/
output in the BIOS is one of the major reasons why CP/M is so popular. It means
that the same version of CP/M can be adapted for all types of computers,
regardless of the oddities of the hardware design. Digital Research will tell you
that there are over 200,000 computers in the world running CP/M. Just about all of
them are running identical copies of the CCP and BDOS. Only the BIOS is
different. If you write a program that plays by the rules and only interacts with the
BDOS to get things done, it will run on almost all of those 200,000 computers
without your having to change a single line of code.

You probably noticed the word “almost” in the last paragraph. Sometimes
programmers make demands of the BIOS directly rather than the BDOS. This
leads to trouble. The BIOS should be off limits to your program. You need to know
what it is and how it works in order to build a customized version of CP/M, but
you must never write programs that talk directly to the BIOS if you want them to
run on other versions of CP/M.

Now that you understand the perils of talking to the BIOS, it is safe to describe
how the BDOS communicates with the BIOS. Unlike the BDOS, which has a
single entry point and uses a value in a register to specify the function to be
performed, the BIOS has several entry points. The first few instructions in the
BIOS are all independent entry points, each taking up three bytes of memory. The
BDOS will enter the BIOS at the appropriate instruction, depending on the
function to be performed. This group of entry points is similar in function to a
railroad marshalling yard. It directs the BDOS to the correct destination in the
BIOS for the function it needs to have done. The entry point group consists of a
series of JUMP instructions, each one three bytes long. The group as a whole is
called the BIOS jump table, or jump vector. Each entry point has a predefined
meaning. These points are detailed and will be discussed in Chapter 6.

CCP, BDOS, and BIOS Interactions

Figure 2-4 summarizes the functions that the CCP, BDOS, and BIOS perform,
the ways in which these parts of CP/M communicate among themselves, and the
way in which one of your programs running under CP/M interacts with the
BDOS.

46 The CP/M Programmer’s Handbook

Basic
Input/Output
System
(BIOS)

Basic
Disk
Operating
System
(BDOS)

Console
Command
Processor
(CCP)

Handles all physical /O to
console, printer, serial /O
and disks (customized by user)

Entry Points
in JMP Table

Handles all logical /O to
console, printer, serial /O
including file management on
disk system.

(Not changed by user)

Handles communication with console;

accepts command lines; has some
commands built-in, or loads them
from disk (Not changed by user)

Program running
under CP/M

requests

—— JMP 0 when finished
processing

CALL 5 to make CP/M

Location
—»- 5 JMP BDOS
.

JMP RESTART

Figure 2-4.

CP/M’s functional breakdown

How CP/M Views the Disk
The Making of a File

Disk Definition Tables

File Organizations

The CP/M File
System

This chapter gives you a close look at the CP/M file system. The Basic Disk
Operating System (BDOS) is responsible for this file system: It keeps a directory
of the files on disk, noting where data are actually stored on the disk. Because the
file system automatically keeps track of this information, you can ignore the
details of which tracks and sectors on the disk have data for a given file.

How CP/M Views the Disk

To manage files on the disk, CP/M works with the disk in logical terms rather
than in physical terms of tracks and sectors. CP/M treats the disk as three major
areas.

These are the reserved area, which contains the bootstrap program and CP/M
itself; the file directory, containing one or more entries for each file stored on the
disk; and the dara storage area, which occupies the remainder of the disk. You will

17

48 The CP/M Programmer’s Handbook

be looking at how CP/M allocates the storage to the files as your programs create
them.

The Basic Input/ Output System (BIOS) has built-in tables that tell CP/M the
respective sizes of the three areas. These are the disk definition tables, described
later in this chapter.

Allocation Blocks

Rather than work with individual 128-byte sectors, CP/M joins several of these
sectors logically to form an allocation block. Typically, an allocation block will
contain eight 128-byte sectors (which makes it 1024 or 1K bytes long). This makes
for easier disk manipulation because the magnitude of the numbers involved is
reduced. For example, a standard 8-inch, single-density, single-sided floppy disk
has 1950 128-byte sectors; hard disks may have 120,000 or more. By using
allocation blocks that view the disk eight sectors at a time, the number of storage
units to be managed is substantially reduced. The total number is important
because numeric information is handled as 16-bit integers on the 8080 and Z80
microprocessors, and therefore the largest unsigned number possible is OFFFFH
(65,535 or 64K decimal). :

Whenever CP/M refers to a specific allocation block, all that is needed is a
simple number. The first allocation block is number 0, the next is number 1, and so
on, up to the total remaining capacity of the disk.

The typical allocation block contains 1024 (1K) bytes, or eight 128-byte
sectors. For the larger hard disks, the allocation block can be 16,384 (16K) bytes,
which is 128 128-byte sectors. CP/M is given the allocation via an entry in the disk
definition tables in the BIOS.

The size of the allocation block is not arbitrary, but it is a compromise. The
originator of the working BIOS for the system —either the manufacturer or the
operating system’s designer— chooses the size by considering the total storage
capacity of the disk. This choice is tempered by the fact that if a file is created with
only a single byte of data in it, that file would be given a complete allocation block.
Large allocation blocks can waste disk storage if there are many small files, but
they can be useful when a few very large files are called for.

This can be seen better by considering the case of a 1 K-byte allocation block. If
you create a very small file containing just a single byte of data, you will have
allocated an entire allocation block. The remaining 1023 bytes will not be used.
You can use them by adding to the file, but when you first create this one-byte file,
they will be just so much dead space. This is the problem: Each file on the disk will
normally have one partly filled allocation block. If these blocks are very large, the
amount of wasted (unused) space can be very large. With 16K-byte blocks, a
10-megabyte disk with only 3 megabytes of data on it could become logically full,
with all allocation blocks allocated.

On the other hand, when you use large allocation blocks, CP/M’s performance
is significantly improved because the BDOS refers to the file directory less

Chapter 3: The CP/M File System 19

frequently. For example, it can read a 16K-byte file with only a single directory
reference.

Therefore, when considering block allocation, keep the following questions in
mind:

How big is the logical disk?
With a larger disk, you can tolerate space wasted by incomplete allocation
blocks.

What is the mean file size?
If you anticipate many small files, use small allocation blocks so that you
have a larger “supply” of blocks. If you anticipate a smaller number of large
files, use larger allocation blocks to get faster file operations.

When a file is first created, it is assigned a single allocation block on the disk.
Which block is assigned depends on what other files you already have on the disk
and which blocks have already been allocated to them. CP/M maintains a table of
which blocks are allocated and which are available. As the file accumulates more
data, it will fill up the first allocation block. When this happens, CP/M will extend
the file and allocate another block to it. Thus, as the file grows, it occupies more
blocks. These blocks need not be adjacent to each other on the disk. The file can
exist as a series of allocation blocks scattered all over the disk. However, when you
need to see the entire file, CP/M presents the allocation blocks in the correct order.
Thus, application programs can ignore allocation blocks. CP/M keeps track of
which allocation blocks belong to each file through the file directory.

The File Directory

Extents

The file directory is sandwiched between the reserved area and the data storage
area on the disk. The actual size of the directory is defined in the BIOS’s disk
definition tables. The directory can have some binary multiple of entries in it, with
one or more entries for each file that exists on the disk. For a standard 8-inch
floppy diskette, there will be room for 64 directory entries; for a hard disk, 1024
entries would not be unusual. Each directory entry is 32 bytes long.

Simple arithmetic can be used to calculate how much space the directory
occupies on a standard floppy diskette. For example, for a floppy disk the formula
is 64 X 32 = 2048 bytes = 2 allocation blocks of 1024 bytes each.

The directory entry contains the name of the file along with a list of the
allocation blocks currently used by the file. Clearly, a single 32-byte directory entry
cannot contain all of the allocation blocks necessary for a 5-megabyte file,
especially since CP/M uses only 16 bytes of the 32-byte total for storage of
allocation block numbers.

Often CP/M will need to control files that need many allocation blocks. It does
this by creating more than one directory entry. Second and subsequent directory

20 The CP/M Programmer’s Handbook

entries have the same file name as the first. One of the other bytes of the directory
entry is used to indicate the directory entry sequence number. Each new directory
entry brings with it a new supply of bytes that can be used to hold more allocation
block numbers. In CP/M jargon, each directory entry is called an extent. Because
the directory entry for each extent has 16 bytes for storing allocation block
numbers, it can store either 16 one-byte numbers or 8 two-byte numbers. There-
fore, the total number of allocation blocks possible in each extent is either 8 (for
disks with more than 255 allocation blocks) or 16 (for smaller disks).

File Control Blocks

Before CP/M can do anything with a file, it has to have some control informa-
tion in memory. This information is stored in a file control block, or FCB. The
FCB has been described as a motel for directory entries—a place for them to
reside when they are not at home on the disk. When operations on a file are
complete, CP/M transforms the FCB back into a directory entry and rewrites it
over the original entry. The FCB is discussed in detail at the end of this chapter.

As a summary, Figure 3-1 shows the relationships between disk sectors,
allocation blocks, directory entries, and file control blocks.

The Making of a File

To reinforce what you already know about the CP/M file system, this section
takes you on a “walk-through” of the events that occur when a program running
under CP/M creates a file, writes data to it, and then closes the file.

Assume that a program has been loaded in memory and the CPU is about to
start executing it. First, the program will declare space in memory foran FCB and
will place some preset values there, the most important of which is the file name,
The area in the FCB that will hold the allocation block numbers as they are
assigned is initially filled with binary 0’s. Because the first allocation block that is
available for file data is block 1, an allocation block number of 0 will mean that no
blocks have been allocated.

The program starts executing. It makes a call to the BDOS (via location
0005H) requesting that CP/M create a file. It transfers to the BDOS the address in
memory of the FCB. The BDOS then locates an available entry in the directory,
creates a new entry based on the FCB in the program, and returns to the program,
ready to write data to the file. Note that CP/M makes no attempt to see if there is
already a file of the same name on the disk. Therefore, most real-world programs
precede a request to make a file with a request to delete any existing file of the same
name.

The program now starts writing data to the file, 128-byte sector by 128-byte
sector. CP/ M does not have any provision for writing one byte at a time. It handles
data sector-by-sector only, flushing sectors to the disk as they become full.

Chapter 3: The CP/M File System 24

128 Bytes

~

Physical |+ 5 [3| 4 s| 6] 7]

Sectors R
L S
b]
Allocation Blocks T
(From 1024 to 0 t 213
16,384 bytes) =
Diskette Allocation Blocks Containing

Reserved Area File Directory File Data and Unused Blocks

LY
Reserved Area
(Normally 2 Tracks)

-

Directory entry “points”
Memory to blocks used in file

File Control Block created from
FCB directory entry in order to
process file in a program

Figure 3-4. The hierarchical relationship between sectors, allocation blocks,
directory entires, and FCBs

The first time a program asks CP/M (via a BDOS request) to write a sector
onto the file on the disk, the BDOS finds an unused allocation block and assigns it
to the file. The number of the allocation block is placed inside the FCB in memory.
As each allocation block is filled up, a new allocation block is found and assigned,
and its number is added to the list of allocation blocks inside the FCB. Finally,
when the FCB has no more room for allocation Block numbers, the BDOS

Writes an updated directory entry out to the disk.

22 The CP/M Programmer’s Handbook

Seeks out the next spare entry in the directory.

* Resets the FCB in memory to indicate that it is now working on the second
extent of the file,

+ Clears out the allocation block area in the FCB and waits for the next sector
from the program.

Thus the process continues. New extents are automatically opened until the
program determines that it is time to finish, writes the last sector out to the disk,
and makes a BDOS request to close the file. The BDOS then converts the FCB
into a final directory entry and writes to the directory.

Directory Entry

The directory consists of a series of 32-byte entries with one or more entries for
each file on the disk. The total number of entries is a binary multiple. The actual
number depends on the disk format (it will be 64 for a standard floppy disk and

perhaps 2048 for a hard disk).
Figure 3-2 shows the detailed structure of a directory entry. Note that the

description is actually Intel 8080 source code for the data definitions you would
need in order to manipulate a directory entry. It shows a series of EQU instruc-
tions — equate instructions, used to assign values or expressions to a label, and in
this case used to access an entry. It also shows a series of DS or define storage
instructions used to declare storage for an entry. The comments on each line
describe the function of each of the fields. Where data elements are less than a byte
long, the comment identifies which bits are used.

As you study Figure 3-2, you will notice some terminology that as yet has not
been discussed. This is described in detail in the sections that follow.

File User Number (Byte 0) The least significant (low order) four bits of byte 0 in the
directory entry contain a number in the range 0 to 15. This is the user number in
which the file belongs. A better name for this field would have been file group
number. It works like this: Suppose several users are sharing a computer system
with a hard disk that cannot be removed from the system without a lot of trouble.
How can each user be sure not to tamper with other users’ files? One simple way
would be for each to use individual initials as the first characters of any file names.
Then each could tell at a glance whether a file was another’s and avoid doing
anything to anyone else’s files. A drawback of this scheme is that valuable
character positions would be used in the file name, not to mention the problems
resulting if several users had the same initials.

The file user number is prefixed to each file name and can be thought of as part
of the name itself. When CP/M is first brought up, User 0 is the default user —the
one that will be chosen unless another is designated. Any files created will go into
the directory bearing the user number of 0. These files are referred to as being in
user area 0. However, with a shared computer system, arrangements must be made

Chapter 3; The CP)M File System 23

for multiple user areas. The USER command makes this possible. User numbers
and areas can range from 0 through 15. For example, a user in area 7 would not be
able to get a directory of, access, or erase files in user area 5.

This user-number byte serves a second purpose. If this byte is set to a value of
0E5H, CP/M considers that the file directory entry has been deleted and com-
pletely ignores the remaining 31 bytes of data. The number 0ESH was not chosen
whimsically. When IBM first defined the standard for floppy diskettes, they chose
the binary pattern 11100101 (OE5H) as a good test pattern. A new floppy diskette
formatted for use has nothing but bytes of 0ESH on it. Thus, the process of erasing
a file is a “logical” deletion, where only the first byte of the directory entry is
changed to OESH. If you accidentally delete a file (and provided that no other
directory activity has occurred) it can be resurrected by simply changing this first
byte back to a reasonable user number. This process will be explained in Chapter
11,

FileNameand Type (Bytes 1-8and 9-14) Asyou can see from Figure 3-2, the file name
in a directory entry is eight bytes long; the file type is three. These two fields are
used to name a file unambiguously. A file name can be less than eight characters
and the file type less than three, but in these cases, the unused character positions
are filled with spaces.

Whenever file names and file types are written together, they are separated by a
period. You do not need the period if you are not using the file type (which is the
same as saying that the file type is all spaces). Some examples of file names are

READ. ME

LONGNAME.TYP

1

1.2
0000 = FDESUSER EQU [+] t1File user number (LS 4 bits)
0001 = FDESNAME EQU 1 yFile name (8 bytes)
0009 = FDESTYP EQu 9 jFile type

;Offsets for bits used in type
0009 = FDESRO EQU 9 3Bit 7 = 1 - Read only
000A = FDES$SYS EQU 10 3Bit 7 = 1 -~ System status
000B = FDESCHANGE EQU 11 sBit 7 = 0 = File Written To
000C = FDESEXTENT EQU 12 ;Extent number”
: 13, 14 reserved for CP/M
O00F = FDESRECUSED EQU 1S sRecords used in this extent
0010 = FDESABUSED EQU 16 sAllocation blocks used
¥

0000 FD$USER: DS sFile user number
0001 FDSNAME : DS 8 sFile name
0009 FD$TYP: DS 3 tFile type
000C FDSEXTENT: Ds 1 sExtent
000D FD$SRESV: DS 2 sReserved for CP/M
000F FDSRECUSED: DS b3 sRecords used in this extent
0010 FD$ABUSED: s 16 sAllocation blocks used

Figure 3-2. Data declarations for CP/M’ file directory entries

24 The CP/M Programmer’s Handbook

A file name and type can contain the characters A through Z, 0 through 9, and
some of the so-called “mark” characters such as “/ ” and “—. You can also use
lowercase letters, but be careful. When you enter commands into the system using
the CCP, it converts all lowercases to uppercases, so it will never be able to find
files that actually have lowercase letters in their directory entries. Avoid using the
“mark” characters excessively. Ones you can use are

'@#3%()—t/

Characters that you must not use are

<> ,;:=7%][]

These characters are used by CP/M in normal command lines, so using them in file
names will cause problems.

You can use odd characters in file names to your advantage. For example, if
you create files with nongraphic characters in their names or types, the only way
you can access these files will be from within programs. You cannot manipulate
these files from the keyboard except by using ambiguous file names (described in
the next section). This makes it more difficult to erase files accidentally since you
cannot specify their names directly from the console.

Ambiguous File Names CP/M has the capability to refer to one or more file names by

File Type

using special “wild card” characters in the file names. The “?”is the main wildcard
character. Whenever you ask CP/M to do something related to files, it will match a
“?”with any character it finds in the file name. In the extreme case, a file name and

As another example, all the chapters of this book were held in files called
“CHAP1.DOC,” “CHAP2.DOC,” and so on. They were frequently referred to,
however, as “CHAP??2.DOC.” Why two question marks? If only one had been
used, for example, “CHAP?.DOC,” CP/M would not have been able to match this
with “CHAP10.DOC” nor any other chapter with two digits. The matching that
CP/M does is strictly character-by-character.

Because typing question marks can be tedious and special attention must be
paid to the exact number entered, a convenient shorthand is available. The asterisk
character “x” can be used to mean “as many ?’s as you need to fill out the name or

could also be rewritten “CHAP*.DOC.”

The use of “x” is allowed only when you are entering file names from the
console. The question mark notation, however, can be used for certain BDOS
operations, with the file name and type field in the FCB being set to the “?” as
needed.

Conventions Although you are at liberty to think up file names without
constraint, file types are subject to convention and, in one or two cases, to the
mandate of CP/M itself. '

Chapter 3: The CP/M File System

The types that will cause problems if you do not use them correctly are

ASM
Assembly language source for the ASM program

.MAC
Macro assembly language
.HEX
Hexadecimal file output by assemblers

.REL
Relocatable file output by assemblers

.COM
Command file executed by entering its name alone

.PRN
Print file written to disk as a convenience

.LIB
Library file of programs

.SUB
Input for CP/M SUBMIT utility program

Examples of conventional file types are

.C
C source code

.PAS
Pascal source code

.COB
COBOL source code

.FTN
FORTRAN source code

.APL
APL programs

.TXT
Text files

.DOC
Documentation files

UNT
Intermediate files

.DTA
Data files

25

26

The CP/M Programmer’s Handbook

ADX
Index files

333

Temporary files

The file type is also useful for keeping several copies of the same file, for
example, “TEST.001,” “TEST.002,” and so on.

File Status Each one of the states Read-Only, System, and File Changed requires only a
single bit in the directory entry. To avoid using unnecessary space, they have been
slotted into the three bytes used for the file type field. Since these bytes are stored
as characters in ASCII (which is a seven-bit code), the most significant bit is not
used for the file type and thus is available to show status.

Bit 7 of byte 9 shows Read-Only status. As its name implies, if a file is set to be
Read-Only, CP/M will not allow any data to be written to the file or the file to be
deleted.

If a file is declared to be System status (bit 7 of byte 10), it will not show up
when you display the file directory. Nor can the file be copied from one place to
another with standard CP/M utilities such as PIP unless you specifically ask the
utility to do so. In normal practice, you should set your standard software tools
and application programs to be both Read-Only and System status/ Read-Only, so
that you cannot accidentally delete them, and System status, so that they do not
clutter up the directory display.

The File Changed bit (bit 7 of byte 11) is always set to 0 when you close a file to
which you have been writing. This can be useful in conjunction with a file backup
utility program that sets this bit to 1 whenever it makes a backup copy. Just by
scanning the directory, this utility program can determine which files have changed
since it was last run. The utility can be made to back up only those files that have
changed. This is much easier than having to remember which files you have
changed since you last made backup copies.

With a floppy disk system, there is less need to worry about backing up on a
file-by-file basis — it is just as easy to copy the whole diskette. This system is useful,
however, with a hard disk system with hundreds of files stored on the disk.

File Extent (Byle 12) Each directory entry represents a file extent. Byte 12 in the directory
entry identified the extent number. If you have a file of less than 16,384 bytes, you
will need only one extent—number 0. If you write more information to thie file,
more extents will be needed. The extent number increases by 1 as each new extent

is created.
The extent number is stored in the file directory because the directory entries

are in random sequence. The BDOS must do a sequential search from the top of
the directory to be sure of finding any given extent of a file. If the directory is large,
as it could be on a hard disk system, this search can take several seconds.

Chapter 3: The CP/M File System 27

Reserved Bytes 13 and 14 These bytes are used by the proprietary parts of CP/M’s file
system. From your point of view, they will be set to 0.

Record Number (Byte 15) Byte 15 contains a count of the number of records (128-byte
sectors) that have been used in the last partially filled allocation block referenced
in this directory entry. Since CP/M creates a file sequentially, only the most recent-
ly allocated block is not completely full.

Disk Map (Bytes 16-31) Bytes 16-31 store the allocation block numbers used by each
extent. There are 16 bytes in this area. If the total number of allocation blocks (as
defined by you in the BIOS disk tables) is less than 256, this area can hold as many
as 16 allocation block numbers. If you have described the disk as having more than
255 allocation blocks, CP/M uses this area to store eight two-byte values. In this
case allocation blocks can take on much larger values.

A directory entry can store either 8 or 16 allocation block numbers. If the file
has not yet expanded to require this total number of allocation blocks, the unused
positions in the entry are filled with zeros. You may think this would create a
problem because it appears that several files will have been allocated block 0 over
and over. In fact, there is no problem because the file directory itself always
occupies block 0 (and depending on its size several of the blocks following). Forall
practical purposes, block 0 “does not exist,” at least for the storage of file data.

Note that if, by accident, the relationship between files and their allocation
blocks is scrambled—that is, either the data in a given block is overwritten, or two
or more active directory entries contain the same block number—CP/M cannot
access information properly and the disk becomes worthless.

Several commercially available utility programs manipulate the directory. You
can use them to inspect and change a damaged directory, reviving accidentally
erased files if you need to. There are other utilities you can use to logically remove
bad sectors on the disk. These utilities find the bad areas, work backward from the
track and sector numbers, and compute the allocation block in which the error
occurs. Once the block numbers are known, they create a dummy file, either in
user area 15 or, in some cases, in an “impossible” user area (one greater than 15),
that appears to “own” all the bad allocation blocks.

A good utility program protects the integrity of the directory by verifying that
each allocation block is “owned” by only one directory entry.

Disk Definition Tables

As mentioned previously, the BIOS contains tables telling the BDOS how to
view the disk storage devicesthat are part of the computer system. These tables are
built by you. If you are using standard 8-inch, single-sided, single-density floppy

28 The CP/M Programmer’s Handbook

diskettes, you can use the examples in the Digital Research manual CP/M 2
Alteration Guide. But if you are using some other, more complex system, you must
make some careful judgments. Any mistakes in the disk definition tables can
create serious problems, especially when you try to correct diskettes created using
the erroneous tables. You, as a programmer, must ensure the correctness of the
tables by being careful.

One other point before looking at table structures: Because the tables exist and
define a particular disk “shape” does not mean that such a disk need necessarily be
connected to the system. The tables describe Jogical disks, and there is no way for
the physical hardware to check whether your disk tables are correct. You may have
a computer system with a single hard disk, yet describe the disk as though it were
divided into several logical disks. CP/M will view each such “disk” independently,
and they should be thought of as separate disks.

Disk Parameter Header Table

This table is the starting point in the disk definition tables. It is the topmost
structure and contains nothing but the addresses of other structures. There is one
entry in this table for each logical disk that you choose to describe. There is an
entry point in the BIOS that returns the address of the parameter header table fora
specific logical disk.

An example of the code needed to define a disk parameter header table is
shown in Figure 3-3.

Sector Skewing (Skewtable) To define sector skewing, also called sector interlacing,
picture a diskette spinning in a disk drive. The sectors in the track over which the
head is positioned are passing by the head one after another —sector 1, sector 2,
and so on-—until the diskette has turned one complete revolution. Then the
sequence repeats. A standard 8-inch diskette has 26 sectors on each track, and the
disk spins at 360 rpm. One turn of the diskette takes 60/360 seconds, about 166
milliseconds per track, or 6 milliseconds per sector.

Now imagine CP/M loading a program from such a diskette. The BDOS takes
a finite amount of time to read and process each sector since it reads only a single
sector at a time. It has to make repeated reads to load a program. By the time the
BDOS has read and loaded sector n, it will be too late to read sector n +1. This
sector will have already passed by the head and will not come around for another
166 milliseconds. Proceeding in this fashion, almost 414 seconds are needed to read
one complete track.

This problem can be solved by simply numbering the sectors logically so that
there are several physical sectors between each logical sector. This procedure,
called sector skewing or interlace, is shown in Figure 3-4. Note that unlike physical
sectors, logical sectors are numbered from 0 to 25.

Figure 3-4 shows the standard CP/M sector interlace for 8-inch, single-sided,
single-density floppy diskettes. You see that logical sector 0 has six sectors between

Chapter 3: The CP/M File System

29

DPBASE: 1Base of the parameter header
3 (used to access the headers)
0000 1000 Dw SKEWTABLE sPointer to logical-to-physical
3 sector conversion table
0002 0000 DW o ;Scratch pad areas used by CP/M
0004 0000 DW (o]
0006 0000 DW o]
0008 2A00 DW DIRBUF sPointer to Directory Buffer
3 work area
000A AAOO DW oPBO tPointer to disk parameter black
©00C B90OO oW WACD tPointer to work area (used to
3 check for changed diskettes)
000E C900] ALVECO sPointer to allocation vector
¥
1
H The following equates would normally be derived from
H values found in the disk parameter Block.
H They are shown here only for the sake of completeness.
i
003F = NODE EQU 43 sNumber of directery entries 1
O0F2 = NOAB EGU 242 tNumber of allocation blocks
1]
3 Example data definitions for those objects pointed
3 to by the disk parameter header
3
SKEWTABLE: ;Sector skew table.
¢t Indexed by logical sector
Q010 01070D13 DB 01,07,13,19 tLogical sectors 0,1,2,3
0014 19050B11 DB 25,05,11,17 14,5,6,7
0018 17030%0F DB 23,03, 09,15 18,9, 10,11
001C 1502080E DB 21,02,08,14 312,13, 14,15
0020 141A060C DB 20,26,06,12 116,17,18,19
0024 1218040A DB 18,24,04,10 320,21,22,23
0028 1016 DB 16,22 324,25
1
002A DIRBUF: DS 128 sDirectory buffer
Q0AA DPBO: DS 1S sDisk parameter block
sThis is normally a table of
3 constants.
A dummy definition is shown
$ here
00BY WACD: ns (NDDE+1)/4 sWork area to check directory
3Only used for removable media
00C9 ALVECO: DS {NOAB/8)+1 sAllocation vector #0
sNeeds 1 bit per allocation
$ block

Figure 3-3.

Data declarations for a disk parameter header

it and logical sector 1. There is a similar gap between each of the logical sectors, so
that there are six “sector times” (about 38 milliseconds) between two adjacent
logical sectors. This gives ample time for the software to access each sector.
However, several revolutions of the disk are still necessary to read every sector in
turn. In Figure 34, the vertical columns of logical sectors show which sectors are
read on each successive revolution of the diskette.

The wrong interlace can strongly affect performance. It is not a gradual effect,
either; if you “miss” the interlace, the perceived performance will be very slow. In
the example given here, six turns of the diskette are needed to read the whole
track — this lasts one second as opposed to 414 without any interlacing. But don’t
imagine that you can change the interlace with impunity; files written with one
interlace stay that way. You must be sure to read them back with the same interlace
with which they were written.

30

The CP/M Programmer’s Handbook

Some disk controllers can simplify this procedure. When you format the
diskette, they can write the sector addresses onto the diskette with the interlace
already built in. When CP/M requests sector n, the controller’s electronics wait
until they see the requested sector’s header fly by. They then initiate the read or
write operation. In this case you can embed the interlace right into the formatting
of the diskette.

Because the wrong interlace gives terrible performance, it is easy to know when
you have the right one. Some programmers use the time required to format a
diskette as the performance criterion to optimize the interlace. This is not good
practice because under normal circumstances you will spend very little time
formatting diskettes. The time spent loading a program would be a better arbiter,
since far more time is spent doing this. You might argue that doing a file update
would be even more representative, but most updates produce slow and sporadic
disk activity. This kind of disk usage is not suitable for setting the correct interlace.

Hard disks do not present any problem for sector skewing. They spin at 3600
rpm or faster, and at that speed there simply is no interlace that will help. Some

Physical Sector

Logical Sector

Pass Pass Pass Pass Pass Pass

B W N —
W

10 23

16 24

18 20

22 25

24 21

22

NotE: Additional sector between logical sectors 12 and 13

Figure 3-4.

Physical to logical sector skewing

Chapter 3: The CP/M File System 31

tricks can be played to improve the performance of a hard disk —these will be
discussed in the section called “Special Considerations for Hard Disks,” later in
this chapter.

To better understand these theories, study an example of the standard inter-
lace table, or skewtable. Bear in mind that the code that will access this table will
first be given a Jogical sector. It will then have to return the appropriate physical
sector.

Figure 3-5 shows the code for the skew table and the code that can be used to
access the table. The table is indexed by a logical sector and the corresponding
table entry is the physical sector. You can see that the code assumes that the first
logical sector assigned by CP/M will be sector number 0. Hence there is no need to
subtract 1 from the sector number before using it as a table subscript.

Unused Areas in the Disk Parameter Header Table The three words shown as 0’s in

Figure 3-3 are used by CP/M as temporary variables during disk operations.

DirectoryBuffer (DIRBUF) The directory buffer is a 128-byte area used by CP/M to storea

sector from the directory while processing directory entries. You only need one
directory buffer; it can be shared by all of the logical disks in the system.

Disk Parameter Block (DPBO) The disk parameter block describes the particular charac-

teristics of each logical disk. In general, you will need a separate parameter block
for each type of logical disk. Logical disks can share a parameter block only if their

SKEWTABLE: iLogical sector
0000 01070D13 DB 01,07,13,19 70,1,2,3
0004 19050B11 DB 25,05,11,17 $4,5,6,7
0008 1703090F DB 23,03,09,15 :18,9,10,11
000C 1502080E DB 21,02,08,14 $12,13,14,15
0010 141A080C DB 20,26,06,12 $16,17,18,19
0014 12180404 DB 18,24,04,10 320,21,22,23
0018 1018 DB 16,22 324,25

The code to translate logical sectors to physical
sectors is as follows:

On entry, the logical sector will be transferred from
CP/M as a 16-bit value in registers BC.

CP/M also transfers the address of the skew table

in registers DE (it finds the skew table by looking in
the disk parameter header entry).

On return, the physical sector will be placed
in registers HL.

N0 wE N N wE e N we NR we e e v

SECTRAN:
001A EB XCHG tHL ~> skew table base address
001B 09 DAD B sHL —> physical sector
H entry in skew table
001C 6E Mov L,M s = physical sector
001D &0 May H,0 sHL = Physical Sector
O01E C9 RET tReturn to BDOS

Figure 3-5.

Data declarations for the standard skewtable for standard diskettes

32 The CP/M Programmer’s Handbook

characteristics are identical. You can, for example, use a single parameter block to
describe all of the single-sided, single-density diskette drives that you have in the
system. However, you would need another parameter block to describe double-
sided, double-density diskette drives. It is also rare to be able to share parameter
blocks when a physical hard disk is split up into several logical disks. You will
understand why after looking at the contents of a parameter block, described later
in this chapter.

Work Area to Check for Changed Diskettes (WACD) One of the major problems that
CP/M faces when working with removable media such as floppy diskettes is that
the computer operator, without any warning, can open the diskette drive and
substitute a different diskette. On early versions of CP/M, this resulted in the
newly inserted diskette being overwritten with data from the original diskette.

With the current version of CP/M, you can request that CP/M check if the
diskette has been changed. Given this request, CP/M examines the directory
entries whenever it has worked on the directory and, if it detects that the diskette
has been changed, declares the whole diskette to be Read-Only status and inhibits
any further writing to the diskette. This status will be in effect until the next warm
boot operation occurs. A warm boot occurs whenever a program terminates or a
CONTROL-C is entered to the CCP, resetting the operating system.

The value of WACD is the address of a buffer, or temporary storage area, that
CP/M can use to check the directory. The length of this buffer is defined (some-
what out of place) in the disk parameter block.

Allocation Vector (ALVEC0) CP/M views each disk as a set of allocation blocks, assign-
ing blocks to individual files as those files are created or expanded, and relinquish-
ing blocks as files are deleted.

CP/M needs some mechanism for keeping track of which blocks are used and
which are free. It uses the allocation vector to form a bit map, with each bitin the
map corresponding to a specific allocation block. The most significant bit (bit 7) in
the first byte corresponds to the first allocation block, number 0. Bit 6 corresponds
to block 1, and so on for the entire disk.

Whenever you request CP/M to use a logical disk, CP/M will log in the disk.
This consists of reading down the file directory and, for each active entry or extent,
interacting with the allocation blocks “owned” by that particular file extent. For
each block number in the extent, the corresponding bit in the allocation vector is
setto 1. At the end of this process, the allocation vector will accurately represent a
map of which blocks are in use and which are free.

When CP/M goes looking for an unused allocation block, it tries to find one
near the last one used, to keep the file from becoming too fragmented.

In order to reserve enough space for the allocation vector, you need to reserve
one bit for each allocation block. Computing the number of allocation blocks is
discussed in the section “Maximum Allocation Block Number,” later in this
chapter.

Chapter 3: The CP/M File System 33

Disk Parameter Block

The disk parameter block in early versions of CP/M was built into the BDOS
and was a closely guarded secret of the CP/M file system. To make CP/M
adaptable to hard disk systems, Digital Research decided to move the parameter
blocks out into the BIOS where everyone could adapt them. Because of the
proprietary nature of CP/M’s file system, you will still see several odd-looking
fields, and you may find the explanation given here somewhat superficial. How-
ever, the lack of explanation in no way detracts from your ability to use CP/M asa
tool.

Figure 3-6 shows the code necessary to define a parameter block for 8-inch,
single-sided diskettes. This table is pointed to by—that is, its address is given
in—an entry in the disk parameter header. Each of the entries shown in the disk
parameter block is explained in the following sections.

SectorsPerTrack This is the number of 128-byte sectors per track. The standard diskette

shown in the example has 26 sectors. As you can see, simply telling CP/M that
there are 26 sectors per track does not indicate whether the first sector is num-
bered 0 or 1. CP/M assumes that the first sector is 0; it is left to a sector translate
subroutine to decipher which physical sector this corresponds to.

Hard disks normally have sector sizes larger than 128 bytes. This is discussed in
the section on considerations for hard disks.

Block Shift, Block Mask, and Extent Mask These mysteriously named fields are used

internally by CP/M during disk file operations. The values that you specify for
them depend primarily on the size of the allocation block that you want.

Allocation block size can vary from 1024 bytes (1K) to 16,384 bytes (16K).
There is a distinct trade-off between these two extremes, as discussed in the section
on allocation blocks at the beginning of this chapter.

An allocation block size of 1024 (1K) bytes is suggested for floppy diskettes
with capacities up to 1 megabyte, and a block size of 4096 (4K) bytes for larger
floppy or hard disks.

DPBO:
0000 1A00 DW 26 sSectors per track
0002 03 DB 3 yBlock shift
0003 07 DB 7 31Block mask
0004 03 DB 3 sExtent mask
0005 F200 oW 242 tMax. allocation block number
0007 3F00 DW &3 tNumber of directory entries 1
0009 CO DB 1100$0000B ;Bit map for allocation blocks
000A 00 DB 0000$0000B 3 usad for directory
000B 1000 bW 16 tNo. of bytes in dir. check buffer
000D 0200 W 2 $No. of tracks before directory

Figure 3-6.

Data declarations for the disk parameter block for standard diskettes

34 The CP/M Programmer’s Handbook

If you can define which block size you wish to use, you can now select the
values for the block shift and the block mask from Table 3-1.

Table 3-1. Block Shift and Mask Value

Allocation Block Size Block Shift Block Mask
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63
16,384 7 127

Select your required allocation block size from the left-hand column. This tells
you which values of block shift and mask to enter into the disk parameter block.

The last of these three variables, the extent mask, depends not only on the
block size but also on the total storage capacity of the logical disk. This latter
consideration is only important for computing whether or not there will be fewer
than 256 allocation blocks on the logical disk. Just divide the chosen allocation
block size into the capacity of the logical disk and check whether you will have
fewer than 256 blocks.

Keeping this answer and the allocation block size in mind, refer to Table 3-2
for the appropriate value for the extent mask field of the parameter block. Select
the appropriate line according to the allocation block size you have chosen. Then,
depending on the total number of allocation blocks in the logical disk, select the
extent mask from the appropriate column.

Table 3-2. Extent Mask Value

Number of Allocation Blocks
Allocation Block Size
1 to 255 256 and Above
1,024 0 (Impossible)
2,048 1
4,096 3 1
8,192 7 3
16,384 15 7

Maximum Allocation Block Number This value is the number of the last allocation
block in the logical disk. As the first block number is 0, this value is one less than
the total number of allocation blocks on the disk. Where only a partial allocation
block exists, the number of blocks is rounded down.

Chapter 3: The CP/M File System 39

Figure 3-7 has an example for standard 8-inch, single-sided, single-density
diskettes. Note that CP/M uses two reserved tracks on this diskette format.

Number of Directory EntriesMinus 41 Do not confuse this entry with the number of files

that can be stored on the logical disk; it is only the number of entries (minus one).
Each extent of each file takes one directory entry, so very large files will consume
several entries. Also note that the value in the table is one less than the number of-
entries.

On a standard 8-inch diskette, the value is 63 entries. On a hard disk, you may
want to use 1023 or even 2047. Remember that CP/M performs a sequential scan
down the directory and this takes a noticeable amount of time. Therefore, you
should balance the number of logical disks with your estimate of the largest file size
that you wish to support.

As a final note, make sure to choose a number of entries that fits evenly into
one or more allocation blocks. Each directory entry needs 32 bytes, so you can
compute the number of bytes required. Make sure this number can be divided by
your chosen allocation block size without a remainder.

Aliocation Blocks for the Directory This is a strange value; it is not a number, but a bit

map. Looking at Figure 3-6, you see the example value written out in full as a
binary value to illustrate how this value is defined. This 16-bit value has a bit set to
1 for each allocation block that is to be used for the file directory.

This value is derived from the number of directory entries you want to have on
the disk and the size of the allocation block you want to use. One given, or

Physical characteristics: Calculate:
77 Tracks/Diskette 77 Tracks/Diskette
26 Sectors/Track — 2 Tracks Reserved for CP/M
128 Bytes/Sector 75 Tracks for File Storage
2 Tracks Reserved for CP/M %26 Number of Sectors
1024 BytesfAllocation Block —=

1950 Sectors for File Storage
X128 Bytes per Sector
249,600 Bytes for File Storage
+1024 Bytes/Allocation Block
243.75 Total Number of
Allocation Blocks
242 Number of the last
allocation block

(rounded and based on
first block being Block 0)

Figure 3-7. Computing the maximum allocation block number for standard diskettes

36 The CP/M Programmer’s Handbook

constant, in this derivation is that the size of each directory entry is 32 bytes.

In the example, 64 entries are required (remember the number shown is one
less than the required value). Each entry has 32 bytes. The total number of bytes
required for the directory thus is 64 times 32, or 2048 bytes. Dividing this by the
allocation block size of 1024 indicates that two allocation blocks must be reserved
for the directory. You can see that the example value shows this by setting the two
most significant bits of the 16-bit value.

As a word of warning, do not be tempted to declare this value using a DW
(define word) pseudo-operation. Doing so will store the value byte-reversed.

Size of BufferforDirectory Checking As mentioned before in the discussion of the disk
parameter header, CP/M can be requested to check directory entries whenever it is
working on the directory. In order to do this, CP/M needs a buffer area, called the
work area to check for changed diskettes, or WACD, in which it can hold working
variables that keep a compressed record of what is on the directory. The length of
this buffer area is kept in the disk parameter block; its address is specified in the
parameter header. Because CP/M keeps a compressed record of the directory, you
need only provide one byte for every four directory entries. You can see in Figure
3-6 that 16 bytes are specified to keep track of the 64 directory entries.

Number of Tracks Before the Directory Figure 3-8 shows the layout of CP/M on a
standard floppy diskette. You will see that the first two tracks are reserved,
containing the initial bootstrap code and CP/M itself. Hence the example in
Figure 3-6, giving the code for a standard floppy disk, shows two reserved tracks
(the number of tracks before the directory).

This track offset value, as it is sometimes called, provides a convenient method
of dividing a physical disk into several logical disks.

Special Considerations for Hard Disks

If you want to run CP/M on a hard disk, you must provide code and build
tables that make CP/M work as if it were running on a very large floppy disk. You
must even include 128-byte sectors. However, this is not difficult to do.

To adapt hard disks to the 128-byte sector size, you must provide code in the
disk driver in your BIOS that will present the illusion of reading and writing
128-byte sectors even though it is really working on sectors of 512 bytes. This code
is called the blocking/deblocking routine.

If hard disks have sector sizes other than 128 bytes, what of the number of
sectors per track, and the number of tracks?

Hard disks come in all sizes. The situation is further confused by the disk
controllers, the hardware that controls the disk. In many cases, you can think of
the hard disk as just a series of sectors without any tracks at all. The controller,
given a relative sector number by the BIOS, can translate this sector number into
which track, read/write head (if there is more than one platter), and sector are
actually being referenced.

Chapter 3: The CP/M File System 37

. Tracks
Logical — 2
Sector N
0 1 2 3 76
J L
‘ LS
0 Bootstrap Allocation
1 Allocation Block
2 Allocation Block #240
3 Block L N P
4 Basic #0
5 Disk || | le;cemecooa--
6 Console Operating | File l Allocation
7 Command System | _ ____ - Block
8 Processor (BDOS) . Allocation #241
9 (CCP) Directoty Block
10 Allocation #4
11 Block | | aaaa. ————
12 #1
ICR I Y R AR I A R FSR
14 Allocation
15)) Block
16 Allocation #242
17 [Block
18 Allocation #5
19 Block
20 Basic #2
21 Input/ | | |eme,emm——=
22 Output
23 System |-——-~.¥.____{ Allocation g;::f)?:
24 (BIOS) Block
25 #6
- —?
Figure 3-8. Layout of standard diskette

Furthiermore, most hard disks rotate so rapidly that there is nothing to be
gained by using a sector-skewing algorithm. There is just no way to read more than
one physical sector per revolution; there is not énough time.

In many cases it is desirable to divide up a single, physical hard disk into
several smaller, logical disks. This is done mainly for performance reasons:
Several smaller disks, along with smaller directories, result in faster file operations.

The disk parameter header will have 0’s for the skewtable entry and the pointer
to the WACD buffer. In general, hard disks cannot be changed, at least not without
turning off the power and swapping the entire disk drive. If you are using one of
the new generation of removable hard disks, you will need to use the directory
checking feature of CP/M.

The disk parameter block for a hard disk will be quite different from that used
for a floppy diskette. The number of sectors per track needs careful consideration.
Remember, this is the number of 128-byte sectors. The conversion from the
physical sector size to 128-byte sectors will be done in the disk driver in the BIOS.

38 The CP/M Programmer’s Handbook

If you have a disk controller that works in terms of sectors and tracks, all you
need do is compute the number of 128-byte sectors on each track. Multiply the
number of physical sectors per track by their size in bytes and then divide the
product by 128 to give the result as the number of 128-byte sectors per physical
track.

But what of those controllers that view their hard disks as a series of sectors
without reference to tracks? They obscure the fact that the sectors are arranged on
concentric tracks on the disk’s surface. In this case, you can play a trick on CP/M.
You can set the “sectors per track” value to the number of 128-byte sectors that will
fit into one of the disk’s physical sectors. To do this, divide the physical sector size
by 128. For example, a 512-byte physical sector size will give an answer of four
128-byte sectors per “track.” You can now view the hard disk as having as many
“tracks” as there are physical sectors. By using this method, you avoid having to do
any kind of arithmetic on CP/M’s sector numbers; the “track” number to which
CP/M will ask your BIOS to move the disk heads will be the relative physical
sector. Once the controller has read this physical sector for you, you can look at the
128-byte sector number, which will be 0, 1, 2, or 3 (for a 512-byte physical sector) in
order to select which 128 bytes need to be moved in or out of the disk buffer.

The block shift, block mask, and extent mask will be computed as before. Use
a4096-byte allocation block size. This will yield a value of 5 for the block shift, 31
for the block mask, and given that you will have more than 256 allocation blocks
for each logical disk, an extent mask value of 1.

The maximum allocation block number will be computed as before. Keep
clear in your mind whether you are working with the number of physical sectors
(which will be larger than 128 bytes) or with 128-byte sectors when you are
computing the storage capacity of each logical disk.

The number of directory entries (less 1) is best set to 511 for logical disks of 1
megabyte and either 1023 or 2047 for larger disks. Remember that under CP/M
version 2 you cannot have a logical disk larger than 8 megabytes.

The allocation blocks for the directory are also computed as described for
floppy disks.

As a rule, the size of the directory check buffer (WADC) will be set to 0, since
there is no need to use this feature on hard disk systems with fixed media.

The number of tracks before the directory (track offset) can be used to divide
up the physical disk into smaller logical disks, as shown in Figure 3-9.

There is no rule that says the tracks before a logical disk’s directory cannot be
used to contain other complete logical disks. You can see this in Figure 3-9. CP/M
behaves as if each logical disk starts at track 0 (and indeed they do), but by
specifying increasingly larger numbers of tracks before each directory, the logical
disks can be staggered across the available space on the physical disk.

Figure 3-10 shows the calculations involved in the first phase of building disk
parameter blocks for the hard disk shown in Figure 3-9. The physical characteris-
tics are those imposed by the design of the hard disk. As a programmer, you do not
have any control over these; however, you can choose how much of the physical

Chapter 3: The CP/M File System 39

Track Track Track Track Track
0 10 58 211 363
v | y]
Logical Disk A Logical Disk 3 Logical Disk C
A

|10 B
Reserved J, 58 4
Tracks e 'C

< fo— 211 -

Figure 3-9. Dividing hard disks into logical disks

disk is assigned to each logical disk, the allocation block size, and the number of
directory entries. You can see that logical disk A is much smaller than disks Band
C, and that B and C are the same size. Disk A will be the systems disk from which
most programs will be loaded, so its smaller directory size will make program
loading much faster. The allocation block size for disk A is also smaller in order to
reduce the amount of space wasted in partially filled allocation blocks. -

Figure 3-10 also shows the calculations involved in computing the maximum
allocation block number. Again, note that once the total number: of allocation
blocks has been computed, it is necessary to round it down in the case of any
fractional components and then subtract 1 to get the maximum number (the first
block being 0).

Figure 3-11 shows the actual values that will be put into the parameter blocks.
It is assumed that the disk controller is one of those types that view the physical
disk as a series of contiguous sectors and make no reference to tracks; the internal
electronics and firmware in the controller take care of these details. For this
reason, CP/M is told that each physical sector is a “track” in CP/M’s terms. Each
“track” has 512 bytes and can therefore store four 128-byte sectors. You can see this
is the value that is in the sectors/“track” field.

The block shift and mask values are obtained from Table 3-1, using the
allocation block size previously chosen. Then, with both the allocation block size
and the maximum number of aliocation blocks (see Figure 3-10), the extent mask
can be obtained from Table 3-2. You can see in Figure 3-11 that extent mask values
of 1 were obtained for all three logical disks even though two different allocation
block sizes have been chosen, and even though disk A has less than 256 blocks and
disks B and C have more.

40 The CP/M Programmer’s Handbook

Physical Characteristics: Calculate:
364 Tracks/Disk
20 Sectors/Track A: B:and C:
512 Byt;s/ Sector 48 153 Tracks assigned to Disk
10,240 Bytes/ Track X10,240 X10,240 Bytes/ Track
491,520 1,566,720 Bytes/Disk
+ 2048 + 4096 Bytes/Allocation Block
Chosen Logical Characteristics: 240 382.5 Number of Allocation Blocks
Allocation 239 381 Maximum Block Number
Tracks Block Size
Reserved Area 10 n/a
Disk A: 48 2048
Disk B: 153 4096
Disk C: 153 4096
Figure 3-10. Computing the maximum allocation block number for a hard disk
DPBA: DPBB: DPBC:)
4 4q 4 1128-byte sectors/"track"
4 5 5 ;Blotk shift
15 3t 31 $Block mask
1 1 b sExtent mask
239 381 381 yMax. all. block #
2355 1023 1023 tNo. of directory entries
111100008 11111111B 11111111B ;Bit Map for allocation blocks
00000000B O0000000B OOO00000B ; used for directory
[+] o] o] sNo. of bytes in dir.check buffer
{10) (58) (211) sActual tracks before directory
200 1160 4220 1"Tracks" before directory
Figure 3-14. Disk parameter tables for a hard disk

The bit map showing how many allocation blocks are required to hold the file
directory is computed by multiplying the number of directory entries by 32 and
dividing the product by the allocation block size. This yields results of 4 for disk A
and 8 for disks Band C. As you can see, the bit maps have the appropriate number
of bits set.

Since most of the hard disks on the market today do not have removable
media, the lengths of the directory checking buffer are set to 0.

The number of “tracks” before the directory requires a final touch of skull-
duggery. Having already indicated to CP/M that each “track”has four sectors, you
need to continue in the same vein and express the number of real tracks before the
directories in units of 512-byte physical sectors.

As a final note, if you are specifying these parameter blocks for a disk
controller that requires you to communicate with it in terms of physical tracks and
128-byte sectors, then the number of sectors per track must be set to 80 (twenty

Chapter 3: The CP/M File System 44

512-byte sectors per physical track). You would also have to change the number of
tracks before the directory by stating the number of physical tracks (shown in
parentheses on Figure 3-11).

Adding Additional information to the Parameter Block

Normally, some additional information must be associated with each logical
disk. For example, in a system that has several physical disks, you need to identify
where each logical disk resides. You may also want to identify some other physical
parameters, disk drive types, I/O port numbers, and addresses of driver sub-
routines.

You may be tempted to extend the disk parameter header entry because there is
a separate header entry for each logical disk. But the disk parameter header is
exactly 16 bytes long; adding more bytes makes the arithmetic that we need to use
in the BIOS awkward. The best place to put these kinds of information is to prefix
them to the front of each disk parameter block. The label at the front of the block
must be left in the same place lest CP/M become confused. Only special additional
code that you write will be “smart” enough to look in front of the block in order to
find the additional parameter information.

File Organizations

CP/M supports two types of files: sequential and random. CP/M views both
types as made up of a series of 128-byte records. Note that in CP/M’s terms, a
record is the same as a 128-byte sector. This terminology sometimes gets in the
way. It may help to think of 128-byte sectors as physical records. Applications
programs manipulate logical records that bear little or no relation to these
physical records. There is code in the applications programs to manipulate logical
records.

CP/M does not impose any restrictions on the contents of a file. In many cases,
though, certain conventions are used when textual data is stored. Each line of text
is terminated by ASCII CARRIAGE RETURN and LINE FEED, The last sector of a
text file is filled with ASCII SUB characters; in hexadecimal this is 1AH.

File Control Blocks

In order to get CP/M to work on a file, you need to provide a structure in which
both you and the BDOS can keep relevant details about the file, its name and type,
and so on. The file control block (FCB) is a derivative of the file directory entry, as
you can see in Figure 3-12. This figure shows both a series of equates that can be
used to access an entry and a series of DB (define byte) instructions to declare an
example.

The first difference you will see between the file directory entry and the FCB is
that the very first byte is serving a different purpose. In the FCB, it is used to

42

The CP/M Programmer’s Handbook

specify on which disk the file is to be found. You may recall that in the directory,
this byte indicates the user number for a given entry. When you are actually
processingfiles, the current user number is set either by the operator in a command
from the console or by a BDOS function call; this predefines which subset of files
in the directory will be processed. Therefore the FCB does not need to keep track
of the user number.

The disk number in the FCB’s ﬁrst byte is stored in an odd way. A value of 0
indicates to CP/M that it should look for the file on the current default disk. This
default disk is selected either by an entry from the console or by making a specific
BDOS call from within a program. In general, the default disk should be preset to
the disk that contains the set of programs with which you are working. This avoids
unnecessary typing on the keyboard when you want to load a program.

A disk number value other than0 represents a letter of the alphabet based ona
simple codification scheme of A =1, B= 2, and so on.

As you can see from Figure 3-12, the file name and type must be set to the
required values, and for sequential file processing, the remainder of the FCB can
be set to zeros. Strictly speaking, the last three bytes of the FCB (the random
record number and the random recdrd overflow byte) need not even be declared if
you are never going to process the file randomly.

This raises a subtle conceptual point. Random files are only random files
because you process them randomly. Though this sounds like a truism, what it
means is that CP/M’s files are not intrinsically random or sequential. What they
are depends on how you choose to process them at any given point. Therefore,

0000 = FCBE$DISK EQU [¢] sDisk drive (0 = default, 1=A)
0001 = FCBE$NAME EQU 1 ;File name (8 bytes)
0009 = FCBES$TYP EQU 9 ;File type
;O0ffsets for bits used in type
0009 = FCBES$RO EQU 9 :Bit 7 = 1 - read only
000A = FCBES$SYS EQU 10 sBit 7 = 1 - system status
000B = FCBES$CHANGE EQU 11 sBit 7 = 0 - file written to
4
000C = FCBESEXTENT EQU 12 sExtent number
313, 14 reserved for CP/M
Q00F = FCBESRECUSED EQU 15 sRecords used in this extent
0010 = FCBES$ABUSED EQU 16 t1Allocation blocks used
0020 = FCBESSEQREC EQU 32 31Sequential rec. to read/write
0021 = FCBESRANREC EQU 33 tRandom rec. to read/write
0023 = FCBESRANRECO EQu 35 ;Random rec. overflow byte (MS)
;
4 ;
3 i
0000 00 FCB$DISK: bB o] | 3Search on default disk drive
0001 36494CA4SAEFCBSNAME: DB “FILENAME ~ sFile name
0009 543950 FCB$TYP: DB “TYP sFile type
000C 00 FCBSEXTENT: DB (o] ;Extent
000D 0000 FCBSRESV: DB 0,0 sReserved for CP/M
000F 00 FCBS$RECUSED: DB o sRecords used in this extent
0010 0000000QC00FCB$ABUSED: DB 0,0,0,0,0,0,0,0 sAllocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 Q0 FCB$SEQREC: DB o sSequential rec. to read/write
0021 0000 FCB$RANREC: DW o 3;Random rec. to read/write
0023 00 FCB$RANRECO: DB o] 1Random rec. overflow byte (MS)

Figure 3-12.

Data declarations for the FCB

Chapter 3: The CP/M File System 43

while the manner in which you process them will be different, there is nothing
special built into the file that predicates how it will be used.

Sequential Files

A sequential file begins at the beginning and ends at the end. You can view it as
a contiguous series of 128-byte “records.”

In order to create a sequential file, you must declare a file control block with
the required file name and type and request the BDOS to create the file. You can
then request the BDOS to write, “record” by “record” (really 128-byte sector by
128-byte sector) into the file. The BDOS will take care of opening up new extents
as it needs to. When you have written out all the data, you must make a BDOS
request to close the file.

To read an existing file, you also need an FCB with the required file name and
type declared. You then make a BDOS request to open the file for processingand a
series of Read Sequential requests, each one bringing in the next “record” until
either your program detects an end of file condition (by examining the data
coming in from the file) or the BDOS discovers that there are no more sectors in
the file to read. There is no need to close a file from which you have been reading
data — but do close it. This is not necessary if you are going to run the program
only under CP/M, but it is necessary if you want to run under MP/M (the
multiuser version of CP/M).

What if you need to append further information to an existing file? One option
is to create a new file, copy the existing file to the new one, and then start adding
data to the end of the new file. Fortunately, with CP/M this is not necessary. In the
FCB used to read a file, the name and the type were specified, but you can also
specify the extent number. If you do, the BDOS will proceed to open (if it can find
it) the extent number that you are asking for. If the BDOS opens the extent
successfully, all you need do is check if the number of records used in the extent
(held in the field FCB§RECUSED) is less than 128 (80H). This indicates the extent
is not full. By taking this record number and placing it into the FCB$SEQREC
(sequential record number) byte in the FCB, you can make CP/M jump ahead and
start writing from the effective end of the file.

Random Files

Random files use a simple variation of the technique described above. The
main difference is that the random record number must be set in the FCB. The
BDOS automatically keeps track of file extents during Read/Write Random
requests. (These requests are explained more fully in Chapter 5.)

Conceptually, random files need a small mind-twist. After creating a file as
described earlier, you must set the random record number in the FCB before each
Write Random request. This is the two-byte value called FCBSRANREC in
Figure 3-12. Then, when you give the Write Random request to the BDOS, it will

44 The CP/M Programmer’s Handbook

look at the record number; compute in which extent the record must exist; if
necessary, create the directory entry for the extent; and finally, write out the data
record. Using this scheme, you can dart backward and forward in the file putting
records at random throughout the file space, with CP/M creating the necessary
directory entries each time you venture into a part of the file that has not yet been
written to.

The same technique is used to read a file randomly. You set the random record
number in the FCB and then give a system call to the BDOS to open the correct
extent and read the data. The BDOS will return an error if it cannot find the
required extent or if the particular record is nonexistent.

Problems lie in wait for the unwary. Before starting to do any random reading
or writing, you must open up the file at extent 0 even though this extent may not
contain any data records. For a new file, this can be done with the Create File
request, and for an existing file with the normal Open File request. If you create a
sparse file, one that has gaps in between the data, you may have some problems
manipulating the file, It will appear to have several extents, each one being
partially full. This will fool some programs that normally process sequential files;
they don’t expect to see a partial extent except at the end of a file, and may treat the
wrong spot as the end.

Functions of the CCP
Editing the CCP Command Line
Built-In Commands
Program Loading
Base Page
Memory Dumps of the Base Page
Processing the Command Tail
Available Memory
Communicating with the BIOS
Returning to CP/M

The Console
Command Processor
(CCP)

The Console Command Processor processes commands that you enter from
the console. As you may recall from the brief overview in Chapter 2, the CCP is
loaded into memory immediately below the BDOS. In practice, many programs
deliberately overwrite the CCP in order to use the memory it normally occupies.
This gives these programs an additional 800H bytes (2K bytes).

When one of these “transient programs” terminates, it relinquishes control to
the BIOS, which in turn reloads a fresh copy of the CCP from the system tracks of
the disk back into memory and then transfers control to it. Consequently, the CCP
leads a sporadic existence—an endless series of being loaded into memory,
accepting a command from you at the console, being overwritten by the program

45

46 The CP/M Programmer’s Handbook

you requested to be loaded, and then being brought back into memory when the
program terminates.

This chapter discusses what the CCP does for you in those brief periods when it
is in memory.

Functions of the CCP

Simply put, once the CCP has control of the machine, so do you. The CCP
announces its presence by displaying a prompt of two characters: a letter of the
alphabet for the current default disk drive and a “greater than” sign. In the
example A>>, the A tells you that the default disk drive is currently set to be logical
drive A, and the “>,” that the message was output by the CCP.

Once you see the prompt, the CCP is ready for you to enter a command line. A
command line consists of two major parts: the name of the command and,
optionally, some values for the command. This last part is known as the command
tail.

The command itself can be one of two things: either the name of a file or the
name of one of the frequently used commands built into the CCP.

If you enter the name of one of the built-in commands, the CCP does not need
to go out to the disk system in order to load the command for execution. The
executable code is already inside the CCP.

If the name of the command you entered does not match any of the built-in
commands (the CCP has a table of their names), the CCP will search the
appropriate logical disk drive for a file with a matching name and a file type of
“COM”(which is short for command). You do not enter “.COM” when invoking a
command —the CCP assumes a file type of “COM.”

If you do not precede the name of the COM file with a logical disk drive
specification, the CCP will search the current default drive. If you have prefixed
the COM file’s name with a specific logical drive, the CCP will look only on that
drive for the program. For example, the command MYPROG will cause the CCP
to look for a file called “MYPROG.COM?” on the current default drive, whereas
C:MYPROG would make the CCP search only on drive C.

if you enter a command name that matches neither the CCP’s built-in com-
mand table nor the name of any COM file on the specified disk, the CCP will
output the command name followed by a question mark, indicating it is unable to
find the file.

Editing the CCP Command Line

The CCP uses a line buffer to store what you type until you strike either a
CARRIAGE RETURN or a LINE FEED. If you make an error or change your mind, you
can modify the incomplete command, even to the point of discarding it.

Chapter 4: The Console Command Processor (CCP) 47

You edit the command line by entering control characters from the console.
Control characters are designated either by the combination of keys required to
generate them from the keyboard or by their official name in the ASCII character
set. For example, CONTROL-J is also known as CARRIAGE RETURN or CR.

Whenever CP/M has to represent control characters, the convention is to
indicate the “control” aspect of a character with a caret (“*”). For example,
CONTROL-A will appear as “~ A”, CONTROL-Z as “AZ”, and so on. But if you press the
CONTROL key with the normal shift key and the “6” key, this will produce a
CONTROL-* or “A~”, The representation of control keys with the caret is only
necessary when outputting to the console or the printer —internally, these charac-
ters are held as their appropriate binary values.

CONTROL-C: Warm Boot If you enter a CONTROL-C as the first character of a command
line, the CCP will initiate a warm boot operation. This operation resets CP/M
completely, including the disk system. A fresh copy of the CCP is loaded into
memory and the file directory of the current default disk drive is scanned,
rebuilding the allocation bit map held in the BIOS (as discussed in Chapter 3).

The only time you would initiate a warm boot operation is after you have
changed a diskette (or a disk, if you have removable media hard disks). Thus,
CP/M will reset the disk system.

Note that a CONTROL-C only initiates a warm boot if it is the first character ona
command line. If you enter it in any other position, the CCP will just echo it to the
screen as “~C”. If you have already entered several characters on a command line,
use CONTROL-U or CONTROL-X to cancel the line, and then use CONTROL-C to
initiate a warm boot. You can tell a warm boot has occurred because there will be a
noticeable pause after the CONTROL-C before the next prompt is displayed. The
system needs a finite length of time to scan the file directory and rebuild the
allocation bit map.

CONTROL-E: Physical End-of-Line The CONTROL-E command is a relic of the days of the
teletype and terminals that did not perform an automatic carriage return and line
feed when the cursor went off the screen to the right. When you type a CONTROL-E,
CP/M sends a CARRIAGE RETURN/LINE FEED command to the console, but does
not start to execute the command line you have typed thus far. CONTROL-E is, in
effect, a physical end-of-line, not a logical one.

As you can see, you will need to use this command only if your terminal either
overprints (if it is a hard copy device) or does not wrap around when the cursor
gets to the right-hand end of the line.

CONTROL-H: Backspace The CONTROL-H command is the ASCII backspace character.
When you type it, the CCP will “destructively” backspace the cursor. Use it to
correct typing errors you discover before you finish entering the command line.
The last character you typed will disappear from the screen. The CCP does this by
sending a three-character sequence of backspace, space, backspace to the console.

48 The CP/M Programmer’s Handbook

The CCP ignores attempts to backspace over its own prompt. It also takes care
of backspacing over contro! characters that take two character positions on the
line. The CCP sends the character sequence backspace, backspace, space, space,
backspace, backspace, erasing both characters.

CONTROL-J: Line Feed/CONTROL-M: Carriage Return The CONTROL-J command is
the ASCII LINE FEED character; CONTROL-M is the CARRIAGE RETURN. Both of
these characters terminate the command line. The CCP will then execute the
command.

CONTROL-P: Printer ECho The CONTROL-P command is used to turn on and off a feature
called printer echo. When it is turned on, every character sent to the console is also
sent to CP/M’s list device. You can use this command to get a hard copy of
information that normally goes only to the console.

CONTROL-Pis a “toggle.” The first time you type CONTROL-P it turns on printer
echo; the next time you type CONTROL-P it turns off printer echo. Whenever
CP/M does a warm boot, printer echo is turned off.

There is no easy way to know whether printer echo is on or off. Try typing a few
CARRIAGE RETURNS, and see whether the printer responds; if it does not, type
CONTROL-P and try again.

One of the shortcomings in most CP/M implementations is that the printer
drivers (the software in the BIOS that controls or “drives” the printer) do not
behave very intelligently if the printer is switched off or not ready when you or your
program asks it to print. Under these circumstances, the software will wait forever
and the system will appear to be dead. So if you “hang” the system in this way
when you type a CONTROL-P, check that the printer is turned on and ready.
Otherwise, you may have to reset the entire system.

CONTROL-R:RepeatCommandLline The CONTROL-R command makes the CCP repeat
or retype the current input line. The CCP outputs a “#” character, a CARRIAGE
RETURN/LINE FEED, and then the entire contents of the command line buffer. This
is a useful feature if you are working on a teletype or other hard copy terminal and
have used the RUB or DEL characters. Since these characters do not destructively
delete a character, you can get a visually confusing line of text on the terminal. The
CONTROL-R character gives you a fresh copy of the line without any of the logically
deleted characters cluttering it up. In this way you can see exactly what you have
typed into the command line buffer.

See the discussion of the RUB and DEL characters for an example of CONTROL-
R in use.

CONTROL-S: Stop Screen Output The CONTROL-S command is the ASCII XOFF (also
called DC3) character; XOFF is an abbreviation for “Transmit Off.” Typing
CONTROL-S will temporarily stop output to the console. In a standard version of

Chapter 4: The Console Command Processor (CCP) 49

CP/M, the CCP will resume output when any character is entered (including
another CONTROL-S) from the console. Thus, you can use CONTROL-S as a toggle
switch to turn console output on and off.

In some implementations of CP/M, the console driver itself (the low-level code
in the BIOS that controls the console) will be maintaining a communication
protocol with the console; therefore, a better way of resuming console output after
pausing with a CONTROL-S is to use CONTROL-Q, the ASCII XON or “Transmit On”
character. Entering a CONTROL-Q instead of relying on the fact that any character
may be used to continue the output is a fail-safe measure.

The commands CONTROL-S and CONTROL-Q are most useful when you have
large amounts of data on the screen. By “riding” the CONTROL-S and CONTROL-Q
keys, you can let the data come to the screen in small bursts that you can easily
scan.

CONTROL-U or CONTROL-X: Undo Command Line The commands CONTROL-U and
CONTROL-X perform the same function: They erase the current partially entered
command line so that you can undo any mistakes and start over. The CONTROL-U
command was originally intended for hard copy terminals. The CCP outputs a “#”
character, then a CARRIAGE RETURN/LINE FEED, and then some blanks to leave
the cursor lined up and ready for you to enter the next command line. It leaves
what you originally entered in the previous line on the screen. The CONTROL-X
command is more suited to screens; the CCP destructively backspaces to the
beginning of the command line so that you can reenter it.

RUB or DEL: Delete Last Character The rubout or delete function (keys marked RUB,
RUBOUT, DEL, or DELETE) nondestructively deletes the last character that you
typed. That is, it deletes the last character from the command line buffer and
echoes it back to the console.

Here is an example of a command line with the last few characters deleted
using the RUB key:

AXRUN PAYROLLLLORYAPSALES

AAAAALSA

DELeted

You can see that the command line very quickly becomes unreadable. If you
lose track of what are data characters and what has been deleted, you can use
CONTROL-R to get a fresh copy of what is in the command line buffer.

The example above would then appear as follows:

A>RUN FAYROLLLLORYAPSALES#
RUN SALES_

The “#” character is output by the CCP to indicate that the line has been

50 The CP/M Programmer’s Handbook

“

repeated. The “_” represents the position of the cursor, which is now ready to
continue with the command line.

Built-in Commands

When you enter a command line and press either CARRIAGE RETURN or LINE
FEED, the CCP will check if the command name is one of the set of built-in
commands. (It has a small table of command names embedded in it, against which
the entered command name is checked.) If the command name matches a built-in
one, the CCP executes the command immediately.

The next few sections describe the built-in commands that are available;
however, refer to Osborne CP/M User Guide, second edition by Thom Hogan
(Berkeley: Osborne/ McGraw-Hill, 1982) for a more comprehensive discussion
with examples of the various forms of each command.

X: — Changing Default Disk Drives The default drive is the currently active drive that
CP/M uses for all file access whenever you do not nominate a specific drive. If you
wish to change the default drive, simply enter the new default drive’s identifying
letter followed by a colon. The CCP responds by changing the name of the disk
that appears in the prompt line.

On hard disks, this simple operation may take a second or two to complete
because the BDOS, requested by the CCP to log in the drive, must read through
the disk directory and rebuild the allocation vector for the disk. If you have a
diskette or a disk that is removable, changing it and performing a warm boot has
the same effect of refreshing CP/M’s image of which allocation blocks are used and
which are available. It takes longer on a hard disk because, as a rule, the directories
are much larger.

DIR —Directory of Files In its simplest form, the DIR command displays a listing of the
files set to Directory status in the current user number (or file group) on the current
default drive. Therefore, when you do not ask for any files after the DIR command,
a file name of “+.%” is assumed. This is a total wildcard, so all files that have not
been given System status will be displayed. This is the only built-in command
where an omitted file name reference expands to “all file names, all file types.”

You can display the directory of a different drive by specifying the drive in the
same command line as the DIR command.

You can qualify the files you want displayed by entering a unique or ambiguous
file name or extension. Only those files that match the given file name specification
will be displayed, and even then, only those files that are not set to System status
will appear on the screen. (The standard CP/M utility program STAT can be used
to change files from SYS to DIR status.)

Chapter 4: The Console Command Processor (CCP) 54

Another side effect of the DIR command and files that are SYS status is best
illustrated by an example. Imagine that the current logical drive B has two files on it
called SYSFILE (which has SYS status) and NONSYS (which does not). Look at
the following console dialog, in which user input is underlined:

B: NONSYS SYSFILE does not show
B>RUIR JUNK<crs>

NO FILE JUNK does not exist
B>OIR SYSFILE<cr>

B>

Do you see the problem? If a file is not on the disk, the CCP will display NO
FILE (or NOT FOUND in earlier versions of CP/M). However, if the file does
exist but is a SYS file, the CCP does not display it because of its status; nor does
the CCP say NO FILE. Instead it quietly returns to the prompt. This can be
confusing if you are searching for a file that happens to be set to SYS status. The
only safe way to find out if the file does exist is to use the STAT utility.

ERA—Erase aFile The ERA command logically removes files from the disk (logically
because only the file directory is affected; the actual data blocks are not changed).

The logical delete changes the first byte of each directory entry belonging to a
file to a value of OESH. As you may recall from the discussion on the file directory
entry in Chapter 3, this first byte usually contains the file user number. If itis set to
OESH, it marks the entry as being deleted.

ER A makes a complete pass down the file directory to logically delete all of the
extents of the file.

Unlike DIR, the ERA command does not assume “all files, all types” if you
omit a file name. If it did, it would be all too easy to erase all of your files by
accident. You must enter “*.%” to erase all files, and even then, you must reassure
the CCP that you really want to erase all of them from the disk. The actual dialog
looks like the following:

Ax_

If you change your mind at the last minute, you can press “n” and the CCP will
not erase any files.

One flaw in CP/M is that the ERA command only asks for confirmation when
you attempt to erase all of your files using a name such as “x.x” or “x.7??”, Consider
the impact of the following command:

A>

The CCP with no hesitation has wiped out all files that have a file type starting
with the letter “C” in the current user number on logical disk A.

52 The CP/M Programmer’s Handbook

If you need to use an ambiguous file name in an ERA command, check which
files you will delete by first using a STAT command with exactly the same
ambiguous file name. STAT will show you all the files that match the ambiguous
name, even those with SYS status that would not be displayed by a DIR command.

There are several utility programs on the market with names like UNERA or
WHOOPS, which take an ambiguous file name and reinstate the files that you may
have accidentally erased. A design for a version of UNERASE is discussed in
Chapter 11.

If you attempt to erase a file that is not on the specified drive, the CCP will
respond with a NO FILE message.

REN —RenameaFile The REN command renames a file, changing the file name, the file
type, or both. In order to rename, you need to enter two file names, the new name
and the current file name.

To remember the correct name format, think of the phrase new = old. The
actual command syntax is

Axren newfile.typ=oldfile.typ<cr>
A>_

You can use a logical disk drive letter to specify on which drive the file exists. If
you specify the drive, you only need to enter it on one of the file names. If you enter
the drive with both file names, it must be the same letter for both.

Unlike the previous built-in command, REN cannot be used with ambiguous
file names. If you try, the CCP echoes back the ambiguous names and a question
mark, as in the following dialog;

A>ren chap¥,doc=chapter®.dac{cr>
CHAP#%, DOC=CHAPTER%, DQC?
AX_

If the REN command cannot find the old file, it will respond NO FILE. If the
new file already exists, the message FILE EXISTS will be displayed. If you receive
a FILE EXISTS message and want to check that the new file does exist, remember
that it is better to use the STAT command than DIR. The extant file may be
declared to be SYS status and therefore will not appear if you use the DIR
command.

TYPE—TypeaTextFile The TYPE command copies the specified file to the console. You
cannot use ambiguous file names, and you will need to press CONTROL-S if the file
has more data than can fill one screen. With the TYPE command, the data in the
file will fly past on the screen unless you stop the display by pressing CONTROL-S.
Be careful, because if you type any other character, the TYPE command will abort
and return control to the CCP.

Chapter 4: The Console Command Processor (CCP) 53

Once you have had time to see what is displayed on the screen, you can press
CONTROL-Q to resume the output of data to the console. With standard CP/M
implementations, you will discover that any character can be used to restart the
flow of data; however, use CONTROL-Q as a fail-safe measure. CONTROL-S (X-OFF)
and CONTROL-Q (X-ON) conform to the standard protocol which should be used.

If you need to get hard copy output of the contents of the file, you should type a
CONTROL-P command before you press the CARRIAGE RETURN at the end of the
TYPE command line.

As you may have inferred, the TY PE command should only be used to output
ASCII text files. If for some reason you use the TYPE command with a file that
contains binary information, strange characters will appear on the screen. In fact,
you may program your terminal into some state that can only be remedied by
turning the power off and then on again. The general rule therefore is only use the
TYPE command with ASCII text files.

SAVE — Save Memory Image on Disk The SAVE command is the hardest of the CCP’s
commands to explain. It is more useful to the programmer than to a typical end
user. The format of this command is

A>SAVE n FILENAME.TYP<cr>
A>_

The SAVE command creates a file of the specified name and type (or over-
writes an existing file of this name and type), and writes into it the specified
number n of memory pages. A page in QC\!P/M is 256 (100H) bytes. The SAVE
command starts writing out memory from location 100H, the start of the Transient
Program Area (TPA). Before yop use this command, you will normally have
loaded a program into the TPA. The SAVE command does just what its name
implies: It saves an image of the program onto a disk file.

More often than not, when you use the SAVE command the file type will be
“.COM.” With the file saved in this way, the CCP will be able to load and execute
the file.

USER — Change User Numbers As mentioned before, the directory of each logical disk
consists of several directories that are physically interwoven but logically separated
by the user number. When you use a specific user number, those files that were
created when you were in another user number are logically not available to you.

The USER command provides a way for you to move from one user number to
another. The command format is

A>USER nfcr>
A>_

where n can be any number from 0 to 15. Any other number will provoke the CCP
to echoing back your entry, followed by a question mark.

54 The CP/M Programmer’s Handbook

But once you have switched back and forth between user numbers several
times, it is easy to become confused about which user number you are in. The
STAT command can be used to find the current user number. If you are in a user
number that does not make a copy of STAT available to you however, all you can
do is use the USER command to set yourself to another user number. You cannot
find out which user number you were in; you can only tell the system the user
number you want to go to.

In the custom BIOS systems discussed later, there is a way of displaying the
current user number each time a warm boot occurs. If you are building a system in
which you plan to utilize CP/M’ user number features, you should give this
display of the current user number serious thought. If you are in the wrong user
number and erase files, you can create serious problems.

Some implementations of CP/M have modified the CCP so that the prompt
shows the current user number as well as the default drive (similar to the prompt
used in MP/M). However, this use of a nonstandard CCP is not a good practice.
As a rule, customization should be confined to the BIOS.

Program Loading

Base Page

The first area to consider when loading a program is the first 100H bytes of
memory, called the base page. Several fields — units in this area of memory—are
set to predetermined values before a program takes control.

To aid in this discussion, imagine a program called COPYFILE that copies one
file to another. This program expects you to specify the source and destination file
names on the command line. A typical command would read

A>copyfile tofile.typ fromfile.typ display

Notice the word “display.” COPYFILE will, if you specify the “display” option,
output the contents of the source file (“fromfile.typ”) on the console as the transfer
takes place.

When you press the CARRIAGE RETURN key at the end of the command line,
the CCP will search the current defauit drive (“A” in the example) and load a file
called COPYFILE.COM into memory starting at location 100H. The CCP then
transfers control to location 100H — just past the base page —and COPYFILE
starts executing.

The base page normally starts from location 0000H in memory, but where
there is other material in low memory addresses, it may start at a higher address.
Figure 4-1 shows the assembly language code you will need to access the base page.
RAM is assumed to start at location 0000H in this example.

Chapter 4. The Console Command Processor (CCP) 85
0000 = RAM EQu L] ;Start of RAM (and the base page)
sYou may need to change this to
3 some other value (e.g. 4300H)
0000] ORG RAM ;Set location counter to RAM base
0000 WARMBOOT 3 DS 3 sContains a JMP to warm beoot entry
3 in BIOS Jump vector table
1
0002 = BIOSPAGE EQU RAM+2 tBIOS Jump vector page
1
0003 I0BYTE: DS 1 s Input/cutput redirection byte
14
0004 CURUSER: s 1 tCurrent user (bits 7-3)
0004 = CURDISK EQU CURUSER j3;Default logical disk (bits 3-0)
0005 BDOSE: DS 3 ;Contains a JMP to BDOS entry
0007 = TOPRAM EQU BDOSE+2 1 Top page of usable RAM
H
0005C ORG RAM+SCH ;Bypass unused locations
3
005C FCB1: DS 16 3File control block #1
sNote: if you use this FCB here
3 you will overwrite FCB2 below.
|
006C FCB2: DS 16 3File control block #2
tYou must move this to another
3 place before using it
H
0080 ORG RAM+80H ;Bypass unused locations
¥
COMTAIL: sComplete command tail
0080 COMTAILSCOUNT: DS 1 3Count of the number of chars
3 in command tail (CR not incl.)
0081 COMTAILSCHARS: DS 127 jCharacters in command tail
3 converted to uppercase and
y without trailing carriage ret.
'
0080 ORG RAM+80H ;Redefine command tail area
?
0080 DMABUFFER: DS 128 yDefault "DMA" address used
3 as a 128-byte record buffer
1
0100 ORG RAM+100H ;Bypass unused locations
TPA: ;Start of transient program area
¢ into which programs are loaded.

Figure 4-1. Base page data declarations

Warmboot

Some versions of CP/M, such as the early Heathkit/Zenith system, have ROM
from location 0000H to 42FFH. Digital Research, responding to market pressure,
produced a version of CP/M that assumed RAM starting at 4300H. If you have
one of these systems, you must add 4300H to all addresses in the following
paragraphs except for those that refer to addresses at the top of memory. These
will not be affected by the presence of ROM in low memory.

The individual values used in fields in the base page are described in the

following sections.

The three-byte warmboot field contains an instruction to jump up to the high
end of RAM. This JMP instruction transfers control into the BIOS and triggers a
warm boot operation. As mentioned before, a warm boot causes CP/M to reload
the CCP and rebuild the allocation vector for the current default disk. If you need

56 The CP/M Programmer’s Handbook

to cause a warm boot from within one of your assembly language programs, code

JMP O sWarm Boat

BIOSPAGE The BIOS has several different entry points; however, they are all clustered

IOBYTE

together at the beginning of the BIOS. The first few instructions of the BIOS look
like the following:

JMF ENTRY1
JMF ENTRY2
JMP ENTRY3 jand so on

Because of the way CP/M is put together, the first jump instruction always
starts on a page boundary. Remember that a page is 256 (100H) bytes of memory,
so a page boundary is an address where the least significant eight bits are zero. For
example, the BIOS jump vector (as this set of JMPs is called) may start at an
address such as F200H or E600H. The exact address is determined by the size of
the BIOS.

By looking at the BIOSPAGE, the most significant byte of the address in the
warmboot JMP instruction, the page address of the BIOS jump vector can be
determined.

CP/M is based on a philosophy of separating the physical world from CP/M’s
own logical view of the world. This philosophy also applies to the character-
oriented devices that CP/M supports.

The IOBYTE consists of four two-bit fields that can be used to assign a physical
device to each of the logical ones. It is important to understand that the IOBYTE
itself is just a passive data structure. Actual assignment occurs only when the
physical device drivers examine the IOBYTE, interpreting its contents and select-
ing the correct physical drive for the cooperation of the BIOS. These device drivers
are the low-level (that is, close to machine language) code in the BIOS that actually
interfaces and controls the physical device.

The four logical devices that CP/M knows about are

1. The console. This is the device through which you communicate with
CP/M. It is normally a terminal with a screen and a keyboard. The console
is a bidirectional device: It can be used as a source for information (input)
and a destination to which you can send information (output).

In CP/M terminology, the console is known by the symbolic name of
“CON:”. Note the “:”—this differentiates the device name from a disk file
that might be called “CON.”

2. The list device. This is normally a printer of some sort and is used to make
hard copy listings. CP/M views the printer as an output device only. This
creates problems for printers that need to tell CP/M they are busy, but this

Chapter 4: The Console Command Processor (CCP) 57

problem can be remedied by adding code to the low-level printer driver.
CP/M’s name for this logical device is “LLST:”.

3. Thepaper tape reader. It is unusual to find a paper tape reader in use today.
Originally, CP/M ran on an Intel Microcomputer Development System
called the MDS-800, and this system had a paper tape reader. This device
can be used only as a source for information.

CP/M calls this logical device “RDR:”.

4. The paper tape punch. This, too, is a relic from CP/M’s early days and the
MDS-800. In this case, the punch can be used only for output.
The logical device name used by CP/M is “PUN:”,

The physical arrangement of the JOBYTE fields is shown in Figure 4-2.

Each two-bit field can take on one of four values: 00, 01, 10, and 11. The
particular value can be interpreted by the BIOS to mean a specific physical device,
as shown in Table 4-1.

Although the actual interpretation of the IOBYTE is performed by the BIOS,
the STAT utility can set the IOBYTE using the logical and physical device names,
and PIP (Peripheral Interchange Program) can be used to copy data from one
device to another. In addition, you can write a program that simply changes the

Bit Number

Logical Device

7 6 5 4 3 2 1 0

Nsttn, At gt i gttt rmmn gt ooavpe’
List Punch Reader Console

Figure 4-2. Arrangement of the IOBYTE

Table 4-4. IOBYTE Values

Physical Device
Logical Device
00 01 10 1
Console (CON:) TTY: CRT: BAT: UCI:
Reader (RDR:) TTY: PTR: URI: UR2:
Punch (PUN:) TTY: PTP: UPI: UP2:
List (LST:) TTY: CRT: LPT: ULL:

58

The CP/M Programmer’s Handbook

contents of the IOBYTE. But be careful: Changes in the IOBYTE take effect
immediately.
The values in the IOBYTE have the following meanings:

Console (CON:)

00

Teletype driver (TTY:)
This driver is assumed to be connected to a hard copy device being used
as the main console.

01 CRT driver (CRT?)
The driver is assumed to be connected to a CRT terminal.

10 Batch mode (BAT:)
This is a rather special case. It is assumed that appropriate drivers will be
called so that console input comes from the logical reader (RDR:) and
console output is sent to the logical list device (LST:).

11 User defined console (UC1:)
Meaning depends on the individual BIOS implementation. If, for exam-
ple, you have a high-resolution graphics screen, you could arrange for
this setting of the IOBYTE to direct console output to it. You might
make console input come in from some graphic tablet, joystick, or other
device.

Reader (RDR:)

00 Teletype driver (TTY:)
This refers to the paper tape reader device that was often found on
teletype consoles.

01 Paper tape reader (PTR:)
This presumes some kind of high-speed input device connected to the
system. Modern systems rarely have such a device, so this setting is often
used to connect the logical reader to the input side of a communications
line.

10 User defined reader #1 (UR1:)

11 User defined reader #2 (UR2:)
Both of these settings can be used to direct the physical driver to some
other specialized devices. These values are included only because they
would otherwise have been unassigned. They are rarely used.

Punch (PUN:)

00 Teletype driver (TTY:)
This refers to the paper tape punch that was often found on teletype
consoles.

01 Paper tape punch (PTP:)

CURUSER

CURDISK

BDOSE

Chapter 4: The Console Command Processor (CCP) 59

This presumes that there is some kind of high-speed paper tape punch
connected to the system. Again, this is rarely the case, so this setting is
often used to connect the logical punch to the output side of a communi-
cations line.

10 User defined punch #1 (UPI:)

11 User defined punch #2 (UP2:)
These two settings correspond to the two user defined readers, but they
are practically never used.

List (LST:)

00 Teletype driver (TTY:)
Output will be printed on a teletype.

01 CRT driver (CRT:)
Output will be directed to the screen on a CRT terminal.

10 Line printer driver (LPT:)
Output will go to a high-speed printing device. Although the name /ine
printer implies a specific type of hardware, it can be any kind of printer.

11 User defined list device (UL1:)
Whoever writes the BIOS can arrange for this setting to cause logical list
device output to go to a device other than the main printer.

To repeat: The IOBYTE is not actually used by the main body of CP/M. It is
just a passive data structure that can be manipulated by the STAT utility. Whether
the IOBYTE has any effect depends entirely on the particular BIOS implementa-
tion.

The CURUSER field is the most significant four bits (high order nibble) of its
byte. It contains the currently selected user number set by the CCP USER
command, by a specific call to the BDOS, or by a program setting this nibble to the
required value. This last way of changing user numbers may cause compatibility
problems with future versions of CP/M, so use it only under controlled conditions.

The CURDISK field is the least significant four bits of the byte it shares with
CURUSER. It contains a value of 0 if the current disk is A:, 1 if it is B:, and so on.

The CURDISK field can be set from the CCP, by a request to the BDOS, or by
a program altering this field. The caveat given for CURUSER regarding compatibility
also applies here.

This three-byte field contains an instruction to jump to the entry point of the
BDOS. Whenever you want the BDOS to do something, you can transfer the
request to the BDOS by placing the appropriate values in registers and making a
CALL to this JMP instruction. By using a CALL, the return address will be

60 The CP/M Programmer’s Handbook

TOPRAM

placed on the stack. The subsequent JMP to the BDOS does not put any
additional information onto the stack, which operates on a last-in, first-out basis;
so when the system returns from the BDOS, it will return directly to your
program.

Because the BDOS, like the BIOS, starts on a page boundary, the most
significant byte of the address of the BDOS entry tells you in which page the
BDOS starts. You must subtract 1 from the value in TOPRAM to get the highest
page number that you can use in your program. Note that when you use this
technique, you assume that the CCP will be overwritten since it resides in memory
just below the BDOS.

FCB1 and FCB2 As a convenience, the CCP takes the first two parameters that appear in

COMTAIL

the command tail (see next section), attempts to parse them as though they were
file names, and places the results in FCB1 and FCB2. The results, in this context,
mean that the logical disk letter is converted to its FCB representation, and the file
name and type, converted to uppercase, are placed in the FCB in the correct bytes.
In addition, any use of “*” in the file name is expanded to one or more question
marks. For example, a file name of “abc#.%” will be converted to a name of

Notice that FCB2 starts only 16 bytes above FCBI, yet a normal FCB is at least
33 bytes long (36 bytes if you want to use random access). In many cases, programs
only require a single file name. Therefore, you can proceed to use FCBI straight
away, not caring that FCB2 will be overwritten.

In the case of the COPYFILE program example on previous pages, two file
names are required. Before FCBI1 can be used, the 16 bytes of FCB2 must be
moved into a skeleton FCB that is declared in the body of COPYFILE itself

The command tail is everything on the command line other than the command
name itself. For example, the command tail in the COPYFILE command line is

shown here:

Arcopyfile tofile.type fromfile.typ display

The CCP takes the command tail (converted to uppercase) and stores it in the
COMTAIL area.

COMTAILSCOUNT This is a single-byte binary count of the number of characters in the

command tail. The count does not include a trailing CARRIAGE RETURN or a blank
between the command name and the command tail. For example, if you enter the
command line

A>PRINT ARCH. =%

Chapter 4: The Console Command Processor (CCP) 61

the COMTAILSCOUNT will be six, which is the number of characters in the
string “ABCx.%™.

COMTAILSCHARS These are the actual characters in the command tail. This field is not
blank-filled, so you must use the COMTAILSCOUNT in order to detect the end of
the command tail.

DMASBUFFER In Figure 4-1, the DMASBUFFER is actually the same area of memory as
the COMTALIL. This is a space-saving trick that works because most programs
process the contents of the command tail before they do any disk input or output.

The DMASBUFFER is a sector buffer (hence it has a length of 128 bytes). The
use of the acronym DMA (direct memory access) refers back to the Intel MDS-
800. This system had hardware that could move data to and from diskettes by
going directly to memory, bypassing the CPU completely. The term is still used
even though you may have a computer system that does not use DMA for its disk
I/O. You can substitute the idea of “the address to/from which data is read/writ-
ten” in place of the DMA concept.

You can request CP/M to use a DM A address other than DMASBUFFER, but
whenever the CCP is in control, the DMA address will be set back here.

TPA This is the transient program area into which the CCP loads programs. The
TPA extends up to the base of the BDOS.
The TPA is also the starting address for the memory image that is saved on disk
whenever you use the CCP SAVE command.

Memory Dumps of the Base Page

The following are printouts showing the contents of the base page (the first
100H bytes of memory) as the COPYFILE program will see it.
This is an example of the first 16 bytes of memory:

0000: C3 03 F2 95 00 C3 00 C2 FF Fé FS FF F3 F2 FF FO
S—— .

Arbitrary data left
from system startup

JMP to BDOS Entry Point
(Note 0C200H is starting page of BDOS)

Current default disk (0= A, 1= B)
Current User (User = 0)
Settings of the IOBYTE

JMP WARMBOOT
(Note that the BIOS Jump Vector is at 0F200H)

62 The CP/M Programmer’s Handbook

The command line, as you recall, was

A>copyfile tofilé.typ fromfile.typ display
The FCB1 and FCB2 areas will be set by the CCP as follows:

Logical Disk Logical Disk

i~
Q03C: 00 54 4F 46
. T Q F
Q0&0: 49 4C 45 20 20 54 59 S50 00 00 00 0C 00 46 S22 4F
I L E T Y P . F R 0
0070: 4D 46 47 4C 45 54 59 SO 00 00 00 00 00 F2Z 24 F3
M F I L E T Y F . 4

Since the logical disks were not specified in the file names in the command line,
the CCP has set the disk code in both FCBI and FCB2 to 00H, meaning “use the
default disk.” The file name and type have been converted to uppercase, separated,
and put into the FCBs in their appointed places.

The complete command tail has been stored in COMTAIL as follows:

31 in decimal

Residue

0080: IF 54 4F 46 49 4C 45 2E 54 59 SO 20 46 S52 4F 4D
00901 46 49 4C 45 2E S4 59 S0 20 44 49 53 50 AC 41 59
00AD: 0O 43 52 43 3B 20 20 20 20 43 4F 4D 00 60 60 DA
OUBG: PB 9C 00 00 00 00 00 00 00 GO 06 00 OO 00 00 00
00CO: £S5 ES ES ES ES ES €5 E£5 £5 ES ES £S5 £5 £5 €5 ES
00D0: ES ES ES ES ES ES ES ES ES ES ES £5 E5 £5 £5 E5
QOE0: ES ES ES ES ES ES ES ES ES £5 £5 £5 E5 £5 £5 £5
Q0F0: ES ES ES £S5 ES £5 ES E5 £5 £5 £5 £5 ES ES ES £5

0100: 01 F7 =

Program Start

You can see that the command tail length is 01 FH (31 decimal). This is followed
immediately by the command tail characters themselves. Note that the command
tail stops at location 9FH. The remainder of the data that you can see is the residue
of some previous directory operation by the CCP. You can see the file name
CRCK.COM in a directory entry, followed by several 0E5Hs that are unused
directory space.

Finally, at location 0100H are the first two bytes of the program.

Chapter 4: The Console Command Processor (CCP) 63

Processing the Command Tail

One of the first problems facing you if you write a program that can accept
parameters from the command tail is to process the command tail itself, isolating
each of the parameters. You should use a standard subroutine to do this. This
subroutine splits the command line into individual parameters and returns a count
of the number of parameters, as well as a pointer to a table of addresses. Each
address in this table points in turn to a null-byte-terminated string. Each parame-
ter is placed in a separate string.

Figure 4-3 contains the listing of this subroutine, CTP (Command Tail Pro-

cessor).
0100 ORG 100H
0100 CD3401 START: CALL CTP ;Test bed for CTP
0103 00 NOP
3 Remainder of your program
¥ This subroutine breaks the command tail apart, placing
3 each value in a separate string area,
'
H Return parameters:
H A =0 - No error (Z flag set)
H B = Count of number of parameters
H HL ~> Table of addresses
5 Each address points to a null-byte-
] terminated parameter string.
¥ If too many parameters are specified, then A = THP
3 If a given parameter is too long, then A = PTL
H and D points to the first character of the
? of fending parameter in the COMTAIL area.
]
00680 = COMTAIL EQU |0H sCommand tail in base page
0080 = COMTAILSCOUNT EQU COMTAIL :;Count of chars. in command tail
0001 = CTP$TMP EQU 1 1 Too many parameters error code
0002 = CTPSPTL EQU 2 tParameter too long error code
?
PTABLEs ;Table of pointers to parameters
0104 0CO1t bW P1 3+ Parameter 1
0106 1A01 DW P2 3+ Parameter 2
0108 2801 DW P3 ; Parameter 3
3 <~—= Add more parameter addresses here
010A 0000 DW 0 + Terminator
H
H Parameter strings.
H The first byte is O so that unused parameters appear
¢ to be null strings.
H The last byte of each is a O and is used to detect
H a parameter that is too long.
010C 0001010101P1s DB 0,1,1,1,1,1,1,1,1,1,1,1,1,0 ;Param. 1 & terminator
011A 0001010101P2s DB 0,1,1,1,1,1,1,1,1,1,1,1,1,0 ;Param. 2 & terminator
0128 0001010101P3: DB o,1,1,1,1,1,1,4,1,1,%1,1,1,0 ;Param. 3 & terminator
3 <{—~— Add more parameter strings here
?
CTP: 3Main entry point <<<<«
0138 210401 LXI H, PTABLE tHL -> table of addresses
0139 0EOO MVI C,0 1Set parameter count
013B 3A8000 LDA COMTAILSCOUNT ;Character count
O13E B7 ORA A ;Check if any params.
O13F C8 RZ 1Exit (return params. already set)
0140 ES PUSH H 1Save on top of stack for later
0141 47 MOV B, A 1B = COMTAIL char. count
0142 218100 LX1 H,COMTAIL+! sHL —> Command tail chars.

Figure 4-3. Command Tail Processor (CTP)

64 The CP/M Programmer’s Handbook

CTPSNEXTP: sNext parameter loop
0145 E3 XTHL 3HL. > Table of addresses
$Top of stack = COMTAIL ptr.
0146 SE Mav E.M 3Get LS byte of param. addr.
0147 23 INX H sUpdate address pointer
0148 56 MoV D,M ;Get MS byte of param. addr.
sDE -> Parameter string (or is Q)
0149 7A Mav A, D 1Get copy of MS byte of addr.
O014A B3 ORA E sCombine MS and LS byte
014B CA8001 JZ CTP$TMPX s Too many parameters——exit
Ol14E 23 INX H ;Update pointer to next address
O14F E3 XTHL sHL -> comtail
;Top of stack--update addr. ptr.
sAt this point, we have
3 HL -> next byte in command tail
3 DE -> first byte of next parameter string
CTP$SKIFB:
0150 7E MOV AM ;Get next parameter hyte
0151 23 INX H 1Update command tail ptr.
0152 05 DCR B ;Check if characters still remain
0153 FA7301 MB CTPX $No, so exit
01356 FE20 CPI1 s ;Check if blank
0158 CAS001 JZ CTPS$SKIPB sYes, s0 skip blanks
0158 OC INR [s Increment parameter counter
CTPSNEXTC:
015C 12 STAX D 1Store in parameter string
015D 13 INX D $Update parameter string ptr.
O15E 1A LDAX D 3Check next byte
O015F B7 ORA A $Check if terminator
0160 CA7A01 Jz CTP$PTLX jParameter too long exit
0143 AF XRA A tFloat a 00-byte at end of param.
0164 12 STAX D ;Store in param. string
0145 7€ MoV AM 3sGet next character from tail
0166 23 INX H jUpdate command tail pointer
0147 05 DCR B sCheck if characters still remain
0168 FA730) M CTPX 3No, so exit
016B FE20 CPI [sCheck if parameter terminator
014D CA4501 Jz CTPSNEXTP :Yes, so move to next parameter
0170 C35C01 JMP CTPSNEXTC tNo, so store it in param. string
;
CTPX: sNormal exit
0173 AF XRA A 1A = 0 & Z-flag set
5
CTPCX sCommon exit code
0174 E1l POP H ;Balance stack
0175 210401 LXI H, PTABLE ;Return ptr. to param. addr. table
0178 B7 ORA A ;Ensure Z-flag set appropriately
0179 C9 RET
CTP$PTLX: ;Parameter too long exit
017A 3E02 MVl A, CTPSPTL ;Set error code
017C EB XCHG sDE -> offending parameter
017D C37401 JMP CTPCX sCommon exit
H
CTP$TMPX: ;Too many parameters exit
0180 3E01 MVI A, CTPSTMP ;Set ervor ceode
0182 C37401 JMP CTPCX s Common exit
H
o185 END START

Figure 4-3. Command Tail Processor (CTP) (continued)

Available Memory

Many programs need to use all of available memory, and so very early in the
program they need to set the stack pointer to the top end of the available RAM. As
mentioned before, the CCP can be overwritten as it will be reloaded on the next
warm boot.

Chapter 4: The Console Command Processor (CCP) 65

Figure 4-4 shows the code used to set the stack pointer. This code determines
the amount of memory in the TPA and sets the stack pointer to the top of available
RAM.

Communicating with the BIOS

If you are writing a utility program to interact with a customized BIOS, there
will be occasions where you need to make a direct BIOS call. However, if your
program ends up on a system running Digital Research’s MP/M Operating
System, you will have serious problems if you try to call the BIOS directly. Among
other things, you will crash the operating system.

If you need to make such a call and you are aware of the dangers of using direct
BIOS calls, Figure 4-5 shows you one way to do it.

Remember that the first instructions in the BIOS are the jump vector—a
sequence of JMP instructions one after the other. Before you can make a direct
call, you need to know the relative page offset of the particular JMP instruction
you want to go to. The BIOS jump vector always starts on a page boundary, so all
you need to know is the least significant byte of its address.

0007 = TOPRAM EQU 7 sMost significant byte of

; BDOS entry point
0000 3A07C0 LDA TOPRAM :Get MS byte of BDOS entry point
0003 3D DCR A sBack off one page
0004 2EFF mvI L,0FFH ;Set LS byte of final address
0006 &7 MOV H, A sHL = XXFFH
0007 F9 SPHL 7Set stack pointer from HL

Figure 4-4.

Setting stack pointer to top of available RAM

L Use this technique only for CP/M utility programs.
H MP/M programs do not permit this.
0009 = CONIN EQU 0%H ;Get console input character
1t (It’s the 4th jump in the vector)
0002 = BIOSPAGE EQU 2 1Address of BIOS page
1
H At this point you make a direct CONIN
3 CALL...
H
0000 2E09 MVI L,CONIN ;Get LS byte of CONIN entry point
0002 CDOS00 CALL BIOS 300 to BIOS entry subroutine
$... the rest of your program...
BI0S:
0005 3A0200 LDA BIOSPAGE; Get BIDS jump vector page
0008 &7 MOV H.A sHL -> entry paint
?{You set LS byte before coming here)
0009 E% PCHL 3 "Jump” to BIOS

sYour return address is already
3 on the stack

Figure 4-5.

Making a direct BIOS call

66 The CP/M Programmer’s Handbook

] Note: This example assumes you have not
3 overwritten the CCP,

0100 ’ ORG 100H 3Start at TPA

START:
0100 210000 LXI H, 0 ;Save CCP’s stack pointer
0103 39 DAD SP ;By adding it to 0 in HL
0104 220F01 SHLD CCP$STACK
0107 314101 LXI SP, LOCALS$STACK

The main body of your program is here

. and when you are ready to return

e

to the CCP...

010A 2A0FO01 LHLD CCP$STACK :Get CCP s stack pointer
010D F9 SPHL jRestore SP
010E C% RET ;Return to the CCP
010F CCP$STACK: DS 2 sSave area for CCP SP
o111 DS 48 slocal stack

LOCAL$STACK:
0141 END START

Figure 4-6.

Returning to CCP at program end

Returning to CP/M

Once your program has run, you will need to return control back to CP/M. If
your program has not overwritten the CCP and has left the stack pointer as it was
when your program was entered, you can return directly to the CCP usinga RET
instruction.

Figure 4-6 shows how a normal program would do this if you use a local stack,
one within the program. The CCP stack is too small; it has room for only 24 16-bit
values.

The advantage of returning directly to the CCP is speed. This is true especially
on a hard disk system, where the time needed to perform a warm boot is quite
noticeable.

If your program has overwritten the CCP, you have no option but to transfer
control to location 0000H and let the warm boot occur. To do this, all you need do
is execute

EXITs JMP O sWarm Boot

(Asa hint, if you are testing a program and it suddenly exits back to CP/M, the
odds are that it has inadvertently blundered to location 0000H and executed a
warm boot.)

What the BDOS Does
BDOS Function Calls
Naming Conventions
Making a BDOS Function Request

The Basic Disk
Operating System

The Basic Disk Operating System is the real heart of CP/M. Unlike the
Console Command Processor, it must be in memory all the time. It provides all of
the input/output services to CP/M programs, including the CCP.

As a general rule, unless you are writing a system-dependent utility program,
you should use the BDOS for all of your program’s input/ output. If you circum-
vent the BDOS you will probably create problems for yourself later.

67

68 The CP/M Programmer’s Handbook

What the BDOS Does

The BDOS does all of the system input/ output for you. These services can be
grouped into two types of functions:

Simple Byte-by-Byte I/ O
This is sending and receiving data between the computer system and its
logical devices—the console, the “reader” and “punch” (or their substi-
tutes), and the printer.

Disk File I] O
This covers such tasks as creating new files, deleting old files, opening
existing files, and reading and writing 128-byte long “records” to and from
these files.

The remainder of this chapter explains each of the BDOS functions, shows
how to make each operating system request, and gives additional information for
each function. You should also refer to Digital Research’s manual, CP/M 2
Interface Guide, for their standard description of these functions.

BDOS Function Calls

The BDOS function calls are described in the order of their function code
numbers. Figure 5-1 summarizes these calls.

Naming Conventions

In practice, whenever you write programs that make BDOS calls, you should
include a series of equates for the BDOS function code numbers. We shall be
making reference to these values in subsequent examples, so they are shown in
Figure 5-2 as they will appear in the programs.

The function names used to define the equates in Figure 5-2 are shorter than
those in Figure 5-1 to strike a balance between the abbreviated function names
used in Digital Research’s documentation and the need for clearer function
descriptions. ‘

Making a BDOS Function Request

All BDOS functions are requested by issuing a CALL instruction to location
0005H. You can also request a function by transferring control to location 0005H
with the return address on the stack.

In order to tell the BDOS what you need it to do, you must arrange for the
internal registers of the CPU to contain the required information before the CALL
instruction is executed.

Chapter 5: The Basic Disk Operating System

69

Function
Code

*

SOV~ bEhWN—=O

——
N —

13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28*
29
30
31
32*
33
34
35
36
37
40

Description

Simple Byte-by-Byte 1/0O

Overall system and BDOS reset

Read a byte from the console keyboard
Write a byte to the console screen

Read a byte from the logical reader device
Write a byte to the logical punch device
Write a byte to the logical list device
Direct console I/ O (no CCP-style editing)
Read the current setting of the IOBYTE
Set a new value of the IOBYTE

Send a “$”-terminated string to the console
Read a string from the console into a buffer
Check if a console key is waiting to be read
Return the CP/M version number

Disk File I/0

Reset disk system

Select specified logical disk drive

Open specified file for reading/ writing

Close specified file after reading/ writing

Search file directory for first match with filename
Search file directory for next match with filename
Delete (erase) file

Read the next “record” sequentially

Write the next “record” sequentially

Create a new file with the specified name

Rename a file to a new name

Indicate which logical disks are active

Return the current default disk drive number

Set the DMA address (read/ write address)

Return the address of an allocation vector

Set specified logical disk drive to Read-Only status
Indicate which disks are currently Read-Only status
Set specified file to System or Read-Only status
Return address of disk parameter block (DPB)
Set/ Get the current user number

Read a “record” randomly

Write a “record” randomly

Return logical file size (even for random files)

Set record number for the next random read/ write
Reset specified drive

Write a “record” randomly with zero fill *These do not

work under MP/M.

Figure 5-1.

BDOS function calls

70 The CP/M Programmer’s Handbook

0000 = B$SYSRESET EQU ¢} ;System Reset

0001 = BSCONIN EQL 1 sRead Conscle Eryte

0002 = B$CONOUT EGu 2 ;Write Console Byte

0003 = BS$READIN Ecu 3 ;Read "Reader" Byte

0004 = BSPLUNCUT EQL 4 sWrite "Punch" Byte

00035 = B$LISTOUT EQU S sWrite Printer Byte

0006 = B$DIRCONIO EQt) & sDirect Console 1/0

0007 = B$GETIO EGLY 7 sGet IORYTE

0008 = B$SETIC EQU 8 ;Set IOBYTE

0009 = BSPRINTS EGU 9 iPrint Console String

QQ0A = BHREADCONS EQu 10 ;Read Conscle String

000B = BSCONST EQL! 11 ;Read Console Status

000C = B$GETVER EQL 1z ;Get CP/M Version Number

000D = B$DSKRESET EQU 13 ;Disk System Reset

QOOE = B$SEL.DSK £qu 14 ;Select Disk

000F = E$OPEN EQL 15 ;0pen File

0010 = B$CLOSE EQU 14 ;Clase File

0011 = B$SEARCHF EGU 17 ;Search for First Name Match

0012 = B$SEARCHN EfL 18 1Search for Next Name Match

0012 = BSERASE EQL 19 sErase (delete) File

0014 = BSREADSEQ EQL 20 iRead Sequential

0015 = B$WRITESER EQOU 21 iWrite Sequential

0014 = B$CREATE EQU 22 sCreate File

0017 = BSRENAME Eaqu 23 ;Rename File

0018 = B$GETACTDSK EQLt 24 ;Get Active (Logged-in) Disks

001% = EB$GETCURDSK EQU 25 $sGet Current Default Disk

001A = B$SETDMA EQU 26 sSet DMA (Read/Write) Address

QO1E = BSGETALVEC EQU 27 ;CGet Allocation Vector Address

001C = B$SETDSKRO EG 28 ;Set Disk to Read Only

001D = B$GETRODSKS EQU 29 ;Get Read Only Disks

001E = B$SETFAT EQU 20 31Set File Attributes

QO0LF = EB$GETDPB EQU 31 ;Get Disk Parameter Block Address

0020 = B$SETGETUN EQu 32 3Set/Get User Number

0021 = B$READRAN EQLt 33 ;Read Random

0022 = B$WRITERAN EQH 34 sWrite Random

0023 = B$GETFSIZ EQU 35 3Get File Size

0024 = B$SETRANREC EQU 36 ;Set Random Record Number

0025 = BHRESETD EQL 37 ;Reset Drive

0028 = B$WRITERANZ EQu 40 sWrite Random with Zero-Fill
k.

Figure 5-2. Equates for BDOS function code numbers

The function code number of the specific function call you want performed
must be in register C.

If you need to hand a single-byte value to the BDOS, such as a character to be
sent to the console, then you must arrange for this value to be in register E. If the
value you wish to pass to the BDOS is a 16-bit value, such as the address of a buffer
or a file control block (FCB), this value must be in register pair DE.

When the BDOS hands back a single-byte value, such as a keyboard character
or a return code indicating the success or failure of the function you requested, it
will be returned in register A. When the BDOS returns a 16-bit value, it will be in
register pair HL.

On return from the BDOS, registers A and L will contain the same value, as
will registers B and H. This odd convention stems from CP/M’s origins in PL/ M
(Programming Language/ Microprocessor), a language used by Intel on their
MDS system. Thus, PL/ M laid the foundations for what are known as “register
calling conventions.”

Chapter 5: The Basic Disk Operating System 74

The BDOS makes no guarantee about the contents of the other registers. If you
need to preserve a value that is in a register, either store the value in memory or
push it onto the stack. The BDOS uses its own stack space, so there is no need to
worry about it consuming your stack.

To sum up, when you make a function request to the BDOS that requires a byte
value, the code and the required entry and exit parameters will be as follows:

MVI C,FUNCTIONSCODE 3C = function code
MVI E,SINGLESBYTE ;E = single byte value
CALL BDOS sLocation S5

$A = return code or value
sor HL = return value

For those function requests that need to have an address passed to the BDOS,
the calling sequence is

MVI C,FUNCTIONSCODE - sC = function code
LX1 D, ADDRESS 3DE = address
CALL BDOS sLocation 5

sA = return code or value
sor HL = return value

If a function request involves disk files, you will have to tell the BBOS the
address of the FCB that you have created for the file. (Refer back to Chapter 3 for
descriptions of the FCB.)

Many file processing functions return a value in register A that is either OFFH,
indicating that the file named in the FCB could not be found, or equal to a value of
0, 1, 2, or 3. In the latter case, the BDOS is returning what is called a “directory
code.” The number is the directory entry number that the BDOS matched to the
file name in your FCB. At any given moment, the BDOS has a 128-byte sector
from the directory in memory. Each file directory entry is 32 bytes, so four of them
(numbered 0, 1, 2, and 3) can be processed at a time. The directory code indicates
which one has been matched to your FCB.

References to CP/M “records” in the following descriptions mean 128-byte
sectors. Do not confuse them with the logical records used by applications
programs. Think of CP/M records as 128-byte sectors throughout.

Function 0: System Reset

Example

Function Code: C = 00H
Entry Parameters: None
Exit Parameters: Does not return

0000 = B$SYSRESET EQU (o] ;System Reset

0005 = BDOS EQU] s BDOS entry point

0000 0E0OQ MVI C,B$SYSRESET 3Set function code

0002 C30500 JMP RDOS sNote: you can use a JMP since

3 you don‘t get control back

72 The CP/M Programmer’s Handbook

Purpose

Notes

The system reset function makes CP/M do a complete reset, exactly the same
as the warm boot function invoked when you transfer control to the WARM-
BOOT point (refer to Figure 4-1).

In addition to resetting the BDOS, this function reloads the CCP, rebuilds the
allocation vectors for the currently logged disks, sets the DM A address (used by
CP/M to address the disk read/write buffer) to 80H, marks all disks as being
Read/ Write status, and transfers control to the CCP. The CCP then outputs its
prompt to the console.

This function is most useful when you are working in a high-level language that
does not permit a jump instruction to an absolute address in memory. Use it when
your program has finished and you need to return control back to CP/M.

Function 1: Read Console Byte

Example

Purpose

Notes

Function Code: C = 0lH
Entry Parameters: None
Exit Parameters: A = Data byte from console

0001 = BSCONIN EqU 1 sConsole input
0005 = BDOS EQU 5 ;BDOS entry
0000 OEO1 i1 C, B$CONIN 3Get function code
0002 CDOS00 CALL BDOS
This function reads the next byte of data from the console keyboard and puts it

into register A. If the character input is a graphic character, it will be echoed back
to the console. The only control characters that are echoed are CARRIAGE RETURN,
LINE FEED, BACKSPACE, and TAB. In the case of a TAB character, the BDOS outputs
as many spaces as are required to move the cursor to the next multiple of eight
columns. All of the other control characters, including CONTROL-C, are input but
are not echoed.

This function also checks for CONTROL-S (XOFF) to see if console output should
be suspended, and for CONTROL-P (printer echo toggle) to see if console output
should also be sent to the list device. If CONTROL-S is found, further output will be
suspended until you type another character. CONTROL-P will enable the echoing of
console output the first time it is pressed and disable it the second time.

If there is no incoming data character, this function will wait until there is one.

This function oftéh hinders rather than helps, because it echoes the input.
Whenever you need console input at the byte-by-byte level, you will usually want
to suppress this echo back to the console. For instance, you may know that the
“console” is actually a communications line such as a modem. You may be trying
to accept a password that should not be echoed back. Or you may need toread a

Chapter 5: The Basic Disk Operating System 73

cursor control character that would cause an undesirable side effect on the
terminal if echoed there.

In addition, if you need more than a single character from the console, your
program will be easier to use if the person at the console can take fulladvantage of
the CCP-style line editing. This can best be done by using the Read Console String
function (code 10, 0AH).

Read Console String also is more useful for single character input, especially
when you are expecting a “Y” or “N” (yes or no) response. If you use the Read
Console Byte function, the operator will have only one chance to enter the data.
When you use Read Console String, however, users have the chance to type one
character, change their minds, backspace, and type another character.

Function 2: Write Console Byte

Example

Purpose

Notes

Function Code: C = 02H
Entry Parameters: E = Data byte to be output
Exit Parameters: None

0002 = BSCONOUT EQU 2 sWrite Console Byte
0005 = BDOS £0U 5 +BDOS entry
0000 OE02 MVI C, BSCONOUT sFunction code
0002 1E2A MvI E, “» 3E = data byte to be cutput
0004 CDOS00 CALL BDOS
This function outputs the data byte in register E to the console. As with

function 1, if the data byte is a TAB character, it will be expanded by the BDOS to
the next column that is a multiple of eight. The BDOS also checks to see if there is
an incoming character, and if there is, checks to see if it is a CONTROL-S (in which
case console output is suspended) or CONTROL-P (in which case echoing of console
output to the printer is toggled on or off).

You may have problems using this function to output cursor-addressing
control sequences to the console. If you try to output a true binary cursor address
to position 9, the BDOS will interpret this as a TAB character (ASCII code 9) and
dutifully replace it with zero to eight blanks. If you need to output binary values,
you must set the most significant bit of the character (use an ORI 80H, for
example) so that it will not be taken as the ASCII TAB.

Here are two general-purpose subroutines that you will need for outputting
messages. The first one, shown in Figure 5-3, outputs a null-byte-terminated
message from a specified address. The second, in Figure 54, does essentially the
same thing except that the message string follows immediately after the call to the
subroutine.

74 The CP/M Programmer’s Handbook

3 MSGOUT (message out)

sOutput null-byte-terminated message.

sCalling sequence

H MESSAGE: DB “Meggssage”, O

; :

¥ LXI H, MESSAGE

H CALL MSGOUT

sExit Parameters

H HL —-> Null byte terminator
0002 = BSCONOUT Eay 2 sWrite Console Byte
0005 = BDOS EQU S 3 BDOS entry point

MSGOUT:
0000 7E MoV A,M ;Get next byte for cutput
Q00t R7 ORA A
0002 ¢8 RZ sReturn when null-byte
0003 23 INX H ‘sUpdate message pointer
0004 ES PUSH H ;Save updated pcinter
0005 SF Mav E, sReady for BROS
0006 Q0EO02 MVI C, B$CONOUT
0008 CDOS00 CALL BDOS
000B E1 POP H ;Recover message pointer
0Q0C C3I0000 JIMP MSGoUT ;Go back for next character

Figure 5-3. Write console byte example, output null-byte terminated message from
specified address
sMSGOUTI (message out in-line)
;Output null-byte-terminated message that
;follows the CALL tao MSGOUTI.
;Calling sequence
H CALL MSGOUTI
3 DB “Message”, 0
H ... next instruction
sExit Parameters
5 HL -> instruction following message
0002 = B$CONOUT EQU 2 jWrite Conscle Byte
0005 = BOOS EQU S sBOOS entry point
MSGOUTI:
0000 Et FPOP H sHL -> message
0001 7E MOV A.M 5Get next data byte
0002 23 INX H tUpdate message pointer
0003 B7 ORA A sCheck if null byte
0004 C20800 JNZ MSGOUTIC :No, continue
Q007 E9 PCHL sYes, return to next instruction
7 after in-line message
MSGOUTIC:
0008 ES PUSH H ;Save message pointer
0009 SF MOV E, A sReady for BDOS
000A OEOZ2 MVYI C, B$CONOUT sFunction code
000C CDOT00 CALL BDOS
000F C30000 JMP MSGAUTI 3Go back for next char.
Figure 5-4. Write console byte example, output null-byte terminated message

following call to subroutine

Chapter 5: The Basic Disk Operating System 75

Function 3: Read “Reader” Byte

Example

Purpose

Notes

Function Code: C = 03H
Entry Parameters: None
Exit Parameters: A = Character input

0003 = BSREADIN EQU 3 ;Read "Reader" Byte
0005 = BDOS EQu S ;BDOS entry

0000 QOEO3 MVI C, B$SREADIN sFunction code
0002 CDOS00 CALL BDOS 3A = reader byte

This function reads the next character from the logical “reader” device into
register A. In practice, the physical device that is accessed depends entirely on how
your BIOS is configured. In some systems, there is no reader at all; this function
will return some arbitrary value such as 1AH (the ASCII CONTROL-Z character,
used by CP/M to denote “End of File”).

Controlis not returned to the calling program until a character has been read.

Since the physical device (if any) used when you issue this request depends
entirely on your particular BIOS, there can be no default standard for all CP/M
implementations. This is one of the weaker parts of the BDOS.

You should “connect” the reader device by means of BIOS software to a serial
port that can be used for communication with another system. This is only a
partial solution to the problem, however, because this function call does not return
control to your program until an incoming character has been received. There is
no direct way that you can “poll” the reader device to see if an incoming character
has been received. Once you make this function call, you lose control until the next
character arrives; there is no function corresponding to the Read Console Status
(function code 11, 0BH) that will simply read status and return to your program.

One possible solution is to build a timer into the BIOS reader driver that
returns control to your program with a dummy value in A if a specified period of
time goes by with no incoming character. But this brings up the problem of what
dummy value to use. If you ever intend to send and receive files containing pure
binary information, there is no character in ASCII that you might not encounter in
a legitimate context. Therefore, any dummy character you might choose could
also be true data.

The most cunning solution is to arrange for one setting of the IOBY TE (which
controls logical-device-to-physical-device mapping) to connect the console to the
serial communication line. This done, you can make use of the Read Console
Status function, which will return not the physical console status but the serial line
status. Your program can then act appropriately if no characters are received
within a specified time. Figure 5-11 shows a subroutine that uses this technique in
the Set IOBYTE function (code 8, 08H).

76 The CP/M Programmer’s Handbook

Figure 5-5 shows an example subroutine to read lines of data from the reader
device. It reads characters from the reader, stacking them in memory until either a
LINE FEED or a specified number of characters has been received. Note that
CARRIAGE RETURNS are ignored, and the input line is terminated by a byte of 00H.
The convention of 00H-byte terminated strings and no CARRIAGE RETURNS is used
because it makes for much easier program logic. It also conforms to the conven-

tions of the C language.

0003
0005

o00n
Q00A

0000
0001
0002
0003
0006
0007

0008
Q00A
000D
000E
0010
0013
0014
0015
0017
0014
001B
[ele3 R
oo

0020
0022

C30000

3600
(54

s RL$RDR

sRead line from reader device.

;Carriage returns are ignored, and input terminates
;when specified number of characters have been read
sor a line feed is input.

sNote: Potential weakness is that there is no
stimeout in this subroutine. It will wait forever
1if no more characters arrive at the reader device.

3Calling sequence

H, BUFFER
LXI1 B, MAXCQUNT
CALL RL$RDR

Exit Parameters
HL -> O00OH byte terminating string
BC = residual count (0 if max. chars.read)
E = last character read

B&READIN EQU 32 sReader input
BDOS EQU S ;BDOS entry point
CR EQu ODH ;Carriage return
LF EQuU OAH sLine feed (terminator)
RL$RDR:
Mav A, C iCheck if count ©
QRA B 3If count O on entry, fake
MoV E,A 3 last char. read (OCH)
Jz RLERDRX ;Yes, exit
PUSH B ;Save max. chars. count
PUSH H sSave buffer pointer
RL$RDRI: sLoop back here to ignore
MVI C, B$READIN
CALL BDOS ;A = character input
Moy E,A sPreserve copy of chars.
CPI CR $Check if carrviage return
JZ RLS$RDRI sYes, ignore it
POP H ;Recover buffer painter
POP B sRecover max. Count
CPI LF sCheck if line feed
Jz RL$RDRX sYes, exit
MoV M, A 3No, store char. in buffer
INX H slipdate buffer pointer
nCx B s Downdate count
JMP RL$RDR sLoop back for next char.
RL$RDRX:
MV1 M, 0 sNull-byte-terminate buffer
RET

Figure 5-5.

Read line from reader device

Chapter 5: The Basic Disk Operating System 77

Function 4: Write “Punch” Byte

Example

Purpose

Notes

Function Code; C= 04H
Entry Parameters: E = Byte to be output
Exit Parameters: None

0004 = BS$PUNOUT EQU 4 sWrite “"Punch" Byte
0008 = BDOS EQU 5
0000 OEO04 MVI C, B$PUNOUT sFunction code
0002 1E2A MVI E, "®’ ;Data byte to output
0004 CDOSO0 CALL BDOS
This function is a counterpart to the Read “Reader” Byte described above. It

outputs the specified character from register E to the logical punch device. Again,
the actual physical device used, if any, is determined by the BIOS. There is no set
standard for this device; in some systems the punch device is a “bit bucket,” so
called because it absorbs all data that you output to it.

The problems and possible solutions discussed under the Read “Reader” Byte
function call also apply here. One difference, of course, is that this function
outputs data, so the problem of an indefinite loop waiting for the next character is
less likely to occur. However, if your punch device is connected to a communica-
tions line, and if the output hardware is not ready, the BIOS line driver will wait
forever. Unfortunately, there is no legitimate way to deal with this problem since
the BDOS does not have a function call that checks whether a logical device is
ready for output.

Figure 5-6 shows a useful subroutine that outputs a 00 H-byte terminated string
to the punch. Wherever it encounters a LINE FEED, it inserts a CARRIAGE RETURN
into the output data.

Function 5: Write List Byte

Example

Purpose

Function Code: C=05H
Entry Parameters: E = Byte to be output
Exit Parameters: None

0005 = BSLSTOUT EQU 5 tWrite List Byte
0005 = BDOS EQU 5
0000 OEOS MVI C,BSLSTOUT stFunction code
0002 1E2A Mv1 E, %’ sData byte to output
0004 CDOS00 CALL BDOS
This function outputs the specified byte in register E to the logical list device.

As with the reader and the punch, the physical device used depends entirely on the
BIOS.

78 The CP/M Programmer’s Handbook

s WLSPUN

sencountered.

sCalling segquenc

jWrite line to punch device,
swhen a OOH byte is encountered.
sA carriage return is output when a line feed is

e

Qutput terminates

4 LX1 H, BUFFER
H CALL WLSPUN
sExit parameters
H HL —-> OOH byte terminator
0004 = BSFUNOLIT EQl 4
0005 = BDOS EQu S
000D = CR EQu QODH sCarriage return
000A = LF EQU 0AH iline feed
WLSPUN:
0000 ES PUSH H ;Save buffer pointer
0001 7€ MOV A:M sGet next character
0002 B7 ORA A ;Check if OOH
0003 CA2000 Jz WLSPUNX 3Yes, exit
0006 FEOA CP1 LF sCheck if line feead
0008 CC1600 cz WLSPUNLF 3 Yes, O/P CR
O00B SF Moy E, A sCharacter to be output
000C OE04 MVI C, BSPUNOUT ;Function code
000E CDOS00 CaLL BDOS sOutput character
0011 E1 POP H ;Recover buffer pointer
0012 23 INX H s Increment to next char.
0013 C30000 JMP WLSPUN sOutput next char
WLSPUNLF: tline feed encountered
00146 OEO4 MVI C, B$PUNOUT sFunction code
0018 1EOD MVI E,CR sO0utput a CR
Q01A CDOSCO0 CALL BDOS
001D 3EO0A MVI A, LF ;Recreate line feed
0O1F C9 RET ;Qutput LF
WLSPUNX sExit
0020 E} PQOP H iBalance the stack
0021 C9 RET

Figure 5-6. Write line to punch device

Notes

logical punch device.

One of the major problems associated with this function is that it does not deal
with error conditions very intelligently. You cannot be sure which physical device
will be used as the logical list device, and most standard BIOS implementations
will cause your program to wait forever if the printer is not ready or has run out of
paper. The BDOS has no provision to return any kind of error status to indicate
that there is a problem with the list device. Therefore, the BIOS will have to be
changed in order to handle this situation.

Figure 5-7 is a subroutine which outputs data to the list device. As you can see,
this is essentially a repeat of Figure 5-6, which performs the same function for the

Chapter 5: The Basic Disk Operating System

79

sWLSLST

sWrite line to list device. Output terminates
swhen a OOH byte is encountered.

1A carriage return is output when a line feed is
sencountered.

1Calling sequence
LXI

H H, BUFFER
H CALL WLSLST
1Exit parameters
H HL => OOH brte terminator
0005 = BSLSTOUT EQU S
0005 = BDOS EQU S
000D = CR EQU oD+ 1Carriage return
000A = LF EQU 0AH sLine feed
WLSLST:
0000 ES PUSH H 1Save buffer pointer
0001 7E MOV AM sGet next character
0002 B7 ORA A ;Check if OOH
0003 CA2000 JZ WLSLSTX sYes, exit
0004 FEOA CFP1 LF sCheck if line feed
0008 C£C1400 cz WLSLSTLF sYes, O/P CR
000B SF MOV E,A sCharacter to be ocutput
000C OEO0S MvI C,BsLSTOUT tFunction code
Q00E CDOSO0 CALL BDOS s0utput character
0011 EI POP H sRecover buffer pointer
0012 23 INX H ;Update to next char,
0013 C30000 JMP WLSLST ;0utput next char.
WLSLSTLF: sLine feed encountered
001& OEQS MVI C,BsLSTOUT sFunction code
0018 1EOD MVI E,CR s0utput a CR
001A CDOS00 CALL BROS
001D 3EOA MVI A,LF sRecreate line feed
001F C9% RET 30utput LF
WLSLSTX: sExit
0020 E1 POFP H sBalance the stack
0021 €9 RET
Figure 5-7. Write line to list device
Function é: Direct Console I/O
Function Code: C = 06H

Entry Parameters: E = OFFH for Input

Exit Parameters:

Example

0006 =
0005 =

0000 OEO&
0002 1EFF
0004* CDOS00

E = Other than OFFH for output
A = Input byte or status

B$DIRCONIO EQU é sDirect (raw) Console 1/0
BDOS EQU S 3BDOS entry point
jExample of console input
MVI C, BSDIRCONIO sFunction code
MVI E,OFFH $OFFH means input
CALL BDOS 3A = 00 if no char. waiting

sA = NZ if character input

80 The CP/M Programmer’s Handbook

Purpose

Notes

;Example of console output

0007 OEOS MVI €, B$DIRCON1O sFunction code
0009 1E2A MVI E, =/ sNot OFFH means output char.
000B CDO300 CALL BDOS

This function serves double duty: it both inputs and outputs characters from
the console. However, it bypasses the normal control characters and line editing
features (such as CONTROL-P and CONTROL-S) normally associated with console
1/0. Hence the name “direct” (or “unadorned” as Digital Research describes it). If
the value in register E is not OFFH, then E contains a valid ASCII character that is
output to the console. The logic used is most easily understood when written in

pseudo-code:
if this is an input request (E = OFFH)

i
if console status indicates a character is waiting

read the char from the conscle and
return to caller with char in A
¥

else (no input character waiting) and
return to caller with A = 00

3

else (output request)
{

output the char in E to the console and
return to caller
3}

This function works well provided you never have to send a value of OFFH or
expect to receive a value of 00H. If you do need to send or receive pure binary data,
you cannot use this function, since these values are likely to be part of the data
stream.

To understand why you might want to send and receive binary data, remember
that the logical “reader” does not have any method for you to check its status to see
if an incoming character has arrived. All you can do is attempt to read a character
(Read Reader Byte, function code 3). However, the BDOS will not give control
back to you until a character arrives (which could be a very long time). One
possibility is to logically assign the console to a communications line by the use of
the IOBYTE (or some similar means) and then use this Direct I/ O call to send and
receive data to and from the line. Then you could indeed “poll” the communica-
tions line and avoid having your program go into an indefinite wait for an
incoming character. An example subroutine using this technique is shown in
Figure 5-11 under Set IOBYTE (function code 8).

Figure 5-8 shows a subroutine that uses the Direct Console Input and Output.
Because this example is more complex than any shown so far, the code used to
check the subroutine has also been included.

Function 7: Get IOBYTE Setting

Function Code: C= 07H
Entry Parameters: None
Exit Parameters: A = IOBYTE current value

Chapter 5: The Basic Disk Operating System

81

s TESTBED CODE

sBecause of the complexity of this subroutine, the

s actual testbed code has been left in this example.

3 It assumes that DDT or ZSID

3 will be used for checkout.

IF 1 sChange to IF O to disable testbed

0100 ORG 100H
0100 C3110% JMP START ;Bypass “variables" setup by DDT
0103 00 OPTIONS: DB o] sOption flaags
0104 41454900 TERMS: DB ‘AT,’E, 17,0 ;Terminators
0108 0S5 BUFFER DE S sMax. characters in buffer
0109 00 DB 0 $Actual count
010A 6363836363 hal] 99,99,99,99,99 iData bytes
O10F 6363 DE 99,99

START:
0111 210801 LXI H, BUFFER sGet address of buffer
0114 110401 LXI D, TERMS ;Address of terminator table
0117 3A0301 LDA OPTIONS sGet options set by DOT
O11A 47 MOV B,A sPut in correct register
011B CD2BO1 CALL RCS tEnter subroutine
011E CD3800 CALL 38H sForce DOT breakpoint
0121 €31101 JMP START ;Test again

ENDIF tEnd of testbed

;RCS: Read console string (using raw input)

;Reads a string of characters into a memory

¢t buffer using raw input.

;Supports options:

3 o to echa characters or not (when echoing,

4 a carriage return will be echoed followed

H by line feed)

H o warm boot on input of control-C or not

H o terminating input either ons

H o max. no of chars input

i o matching terminator character

3 Calling Sequence

¥ LXT H, BUFFER

H Buffer has structure:

s BLUFFER: DR 10 Max. size

H DE (o] Actual Read

H ns 10+1 Buffer area

| MVl B, OPTIONS Options required

H (see equates)

H LXI D, TERMS Pointer to OOH-byte

H terminated Chars,

$ any one of which is a

H terminator,

H CALL RCS

s Exit Parameters

$ BUFFER: Updated with data bytes and actual

H character count input.

H (Does not include the terminator).

1 A = Terminating Code

H 0= Maximum number of characters input.

3 NZ = Terminator character found.
0001 = RCS$ECHO EQu 000040001 E 7 Input characters to be echoed
0002 = RCS$ABORT EQU 0000%$0010R sAbort on Control-C
0004 = RCS$FOLD EQu 00008$0100B tFold lowercase to uppercase
0008 = RCS$TERM EQU 0000%1000B :DE -> term. char. set
0006 = B$DIRCONIO EQU é :Direct console I/0
0005 = BDOS EqQU S ;BDOS entry point
Q003 = CTLsC EQu O3H sControl-C
Qo0n = CR EQU ODH sCarriage return

Figure 5-8.

Read/ write string from/to console using raw I/O

82 The CP/M Programmer’s Handbook

000A = LF EQU OAH sline feed
0008 = BS EQu 08H iBackspace
RCS%ST: sInternal standard terminator table
0124 OD s ODH ;Carriage return
0125 0A julc] OAH sline feed
0126 00 DB o} sEnd of table
RCS$BSS: 1Destructive backspace sequence
0127 08200800 DE BS,” “,BS,0
RCS: 7 {4<<< Main entry
O12E 23 INX H sHL -> actual count
012C 3600 MVI M, 0 jReset to initial state
012E 2B ncx H sHL -> max. count
RCS$L:
012F ES PUSH H ;Save buffer pointer
0130 CD9201 CALL RCS$GC ;0et character and executes
; ECHQ, ABORT, and FOLD opticns
3C = character input
0133 E1l POP H ;Recover buffer pointer
0134 3E08 MVI A, RCS$TERM ;Check if user-specified terminatar
0136 AO ANA B ;B = options
0137 C23D01 JINZ RCS$UST sUser specified terminators
013A 112401 LXI D, RCS$ST sStandard terminators
RCS$UST:
013D CDD401 CALL RCS$CT sCheck for terminator
0140 CA4COL JZ RCS$NOTT sNot terminator
0143 47 MoV B, A sPreserve terminating char.
RCS$MCI: s (Max. char. input shares this code)
0144 OEOQ MVI c,0 sYerminate buffer
0144 CD7FO1 CALL RCS$SC sSave character
0149 78 MOV A,B sRecaver terminating char.
014A B7 '0RA A sSet flags
014B C9 RET
RCS$NCTT: sNot a terminator
Q14C 3E08 MVI A, BS sCheck for backspace
Q14E B9 omP C
014F CA&001 Jz RCS$BS sRackspace entered
0152 CD7F01 caLL RCS$SC ;Save character in buffer
0155 CDEROL CALL RCE$UC jUpdate count
0158 C22F01 JINZ RCSS$L sNot max. so get ancther char.
0I5B 0600 MVI E, O ;Fake terminating char.
0150 C34401 IMP RCS$MCI 1A = 0 for max. chars. input
RCS$BS: 1Backspace entered
0180 ES PUSH H ;Save buffer pointer
0151 23 INX H sHL -> actual count
0142 35 DCR ™M sBack up one
0183 FA7A01 M RCSENBS sCheck if count negative
0164 212701 LXI H, RCS$EBSS :HL - backspacing sequence
0189 3EO1 MVI A, RCSSECHO $Na, check if echoing
016B AQ ANA B 3B3 will have been echoed if sc
014C CA7001 JdZ RCS$BSNE sNa, input BS not echcoed
01&6F 23 INX H sBypass initial backspace
RCS$BSNE:
0170 CS PUSH B ;Save options and character
171 DS PUSH o ;Save terminator table pointer
0172 CDF&01 CALL WCs sWrite consaole string
0175 Di POP D jRecaver terminator table pointer
0174 Ct POP B sRecover options and character
0177 C37BO1 P RCS$BSX sExit from backspace logic
RCS$NBS:
017A 34 INR ™M sReset count to O
RCS$BSX:
017k E1 POF H sRecaver buffer painter
017C C32F01 MP RCS$L ;Get next character
Figure 5-8. (Continued)

Chapter 5: The Basic Disk Operating System

83

RCS$SC: s Save character in C in buffer
sHL => buffer pointer
017F DS PUSH D ;Save terminator table pointer
0180 ES PUSH H ;Save buffer pointer
0181 23 INX H sHL —> actual count in buffer
0182 S5E MOV E.M ;Get actual count
0183 1C INR E sCount of O points to first data byte
0184 1600 MVI D, 0 tMake word value of actual count
0185 19 DAD D sHL —> next free data byte
0187 71 Mav M, C ;Save data byte away
0188 E1 POP H i Recover buffer pointer
0189 Dt POP D sRecover terminator table
$ Pointer
018A C9 RET
RCS$UC: sUpdate buffer count and check for max.
tReturn Z set if = to max., NZ
3 if not HL -> buffer on entry
018B ES PUSH H sSave buffer pointer
018C 7E MoV AM 31Get max. count
o180 23 INX H sHL => actual count
Q18E 34 INR M :Increase actual count
018F BE CMP M sCompare max. to actual
0190 E1 POP H sRecover buffer pointer
019t C9 RET 3Z-flag set
RCS$GCs sGet character and execute
3+ ECHO, ABORT and FOLD options
0192 DS PUSH D 1Save terminator table pointer
0193 ES PUSH H $Save buffer pointer
0194 C5 PUSH B 1Save option flags
RCS$WT:
0195 OE0S nmvI C, B$DIRCONIQ sFunction code
0197 1EFF MVI » OFFH s1Specify input
0199 CDOS00 CALL BDOS
019C B7 ORA A tCheck if data waiting
019D CA9S501 Jz RCSS$WT 3100 back and wait
01A0 C1 POP B sRecover option flags
O1Al 4F MOV C.,A sSave data byte
01A2 3E02 MvI A,RCS$ABORT sCheck if abort option enabled
01A4 AO ANA B
01AS CAAEO1L Jz RCSSNA #No abort
01A8 BE03 MVI A,CTLSC sCheck for control-C
O1AA B9 CMP [
O1AR CAQQ0O JZ 0o yWarm boot
RCS$NA:
O1AE 3EO04 Mvi A, RCSSFOLD ;Check if folding enabled
O1BO AQ ANA B
O1B1 C4E501 CNZ TOUPPER sConvert to uppercase
0O1B4 3E01 MvI A, RCSSECHO sCheck if echo required
O1R& AO ANA B
01B7 CAD101 Jz RCSSNE 3No echo required
Q1BA CS PUSH B 1Save options and character
O1BB 59 Mov E.C sMove character for output
01BC OE0& MVI C, B$DIRCONIO sFunction code
O1BE CDO%00 CALL BDOS sEcho character
Q1C1 C1 POP B sRecover options and character
01C2 3EOD MVI A, CR 3Check if carriage return
01C4 BY CMP C
01CS C2p10% JINZ RCS$NE s No
01C8 €S PUSH B sSave options and character
01C9 OEQ8 MV1 C,BSDIRCONIO tFunction code
01CB 1EOCA MV1 E,LF 30utput line feed
01CD CDOS00 CALL BDOS
0100 C1 POP B sRecover options and character
RCSSNE:
01Dt E1l POP H ;Recover buffer pointer
0102 D1 POP D sRecover terminator table
o103 C9 RET :Character in C
Figure 5-8. (Continued)

84 The CP/M Programmer’s Handbook

RCS$CT: sCheck for terminator
sC = character just input
sDE ~> 00-byte character
3+ string of term. chars.
sReturns Z status if no
5 match found, NZ if found
s (with A = C = terminating
s character)
01D4 DS PUSH D sSave table pointer
RCS$CTL:
0105 1A LDAX D sGet next terminator character
01Dé B? ORA, A :Check for end of table
01D7 CAE201 JZ RCS$CTX sNo terminator matched
O1DA B9 CMpP o 1Compare to input character
01DB CAE201 Jz RCS$CTX 3Terminator matched
O1DE 13 INX o sMove to next terminator
01DF C3D301 JMP RCS$CTL t loop to try next character in table
RCS$CTX: 3Check terminator exit
01E2 B7 ORA A 1At this point, A will either
s be 0 if the end of the
1 table has been reached, or
$ NZ if a match has been
3 found. The Z-flag will be
3 set.
0iE3 DI POP D sRecover table pointer
01€4 C9 RET
; TOUPPER - Fold lowercase letters to upper
H C = Character on entry and exit
TOUPPER:
O1ES 3E60 MVI A, "a’—1 ;Check if folding needed
O1E7 B9 CMP o ;Compare to input char.
O1E8 D2F5S01 JNC TOUPX $No, char. is < or = "a"-1{
Q1EB 3E7A MVI A, 727 ;Maybe, char. is = or > "a"
O1ED BY CMP [
O1EE DAFS01 JC TQUFX $Na, char. is > “"z"
01F1 3EDF MV1 A, ODFH 3;Fold character
O1F3 Al ANA [
O01F4 4F MOV C, A sReturn folded character
TOUPX3:
01FS C9 RET
1WCS — Write console string (using raw 1/0)
$0utput terminates when a OOH byte is encountered.
3A carriage return is output when a line feed is
jencountered.
1Calling sequence
§ LxI H, BUFFER
[CALL Wes
1Exit parameters
H HL -> OOH byte terminator
WCS:
O1Fé ES PUSH H $Save buffer pointer
O1F7 7E MOV AM ;6et next character
01F8 B7 ORA A 3Check if OOH
01F9 .CA1602 JZ WCSX sYes, exit
O1FC FEOA CPI LF sCheck if line feed
O1FE CCOCO2 Ccz WCSLF 1Yes, output a carriage return
0201 SF MoV E,A sCharacter to be output
0202 OEO0S MVI C,B$DIRCONIO sFunction code
0204 CDOS00 CALL BDOS ;Output character
-0207 E1 POP H sRecover buffer pointer
0208 23 INX H tUpdate to next char.
0209 C3F601 JMP wes $Output next char.
WCSLF: tLine feed encountered
020C OEO04 MvI C,B$DIRCONIC tFunction code
Figure 5-8. (Continued)

Chapter S: The Basic Disk Operating System 85

020E 1EOD MvI E.CR tQutput a CR
0210 CDOS00 CALL BDOS
0213 3EO0A MVI A LF sRecreate line feed
0215 C9 RET $Output LF
WCSX: sExit
0216 E1 POP H sBalance the stack
0217 C¥9 RET
Figure 5-8. (Continued)
Example
0007 = BSGETIO EQU 7 3Get IOBYTE
0005 = BDOS EQU S 3 BDOS entry point
0000 OEQ7 M1 C.B$GETIO tFunction code
0002 CDOS00 CALL BDOS 1A = 10BYTE
Purpose This function places the current value of the IOBYTE in register A.
Notes As we saw in Chapter 4, the IOBYTE is a means of associating CP/M’s logical

devices (console, reader, punch, and list) with the physical devices supported by a
particular BIOS. Use of the IOBY TE is completely optional. CP/M, to quote from
the Digital Research CP/M 2.0 Alteration Guide, “...tolerate[s] the existence of the
IOBYTE at location 0003H.”

In practice, the STAT utility provided by Digital Research does have some
features that set the IOBYTE to different values from the system console.

Figure 5-9 summarizes the IOBYTE structure. A more detailed description
was given in Chapter 4.

Each two-bit field can take on one of four values: 00, 01, 10, and 11. The value
can be interpreted by the BIOS to mean a specific physical device, as shown in
Table 4-1.

Figure 5-10 has equates that are used to refer to the IOBYTE. You can see that
the values shown are declared using the SHL (shift left) operator in the Digital
Research Assembler. This is just a reminder that the values are structured this way
in the IOBYTE itself.

Bit No. ! 73 61 5: 41 3:2111:0}

Logical Device List Pum.:t:'l Reader Conscle

Figure 5-9. The IOBYTE structure

86 The CP/M Programmer’s Handbook

; IOBYTE equates
sThese are for accessing the IOEBYTE.
iMask values to isolate specific devices.
1 {These can alsc be inverted to preserve all EBUT the
s+ specific device)
0003 = IO$CONM EQU 0000$0011B sConsole mask
000C = IQ$RORM EQU 0000$1100R sReader mask
0030 = T0$PUNM EQU 0011%0000R ;Punch mask
00CO = 10$LSTM EQU 1100400008 :List mask
sConsole values
0000 = I0sCTTY EQL [e] ;Console —> TTY:
0001 = I0$CCRT EQU 1 sConsole ~> CRT:
0002 = IO$CBAT EQU 2 ;Console input <- RDOR:
;Console ocutput -> L&T:
0003 = I0$CUC1 EQU 3 ;Console -> UC1: (user console 1)
sReader values
0000 = IOSRTTY EQU O SHL 2 sReader <- TTY:
0004 = I0$RRDR EQU 1 SHL 2 sReader <- RDR:
0008 = I0$RUR1 EQU 2 SHL 2 ;Reader <- UR1: (user reader 1)
000C = I0$RURZ2 EQU 3 SHL 2 sReader <- UR2: (user reader 2)
;Punch values
Q00 = I0$PTTY EQU 0O SHL 4 ;Punch -> TTY:
0010 = I0$PPUN EQU 1 SHL 4 sPunch —-> PUN:
0020 = 10¢PUP1 EQU 2 SHL 4 sPunch => UP1: (user punch 1)
Q030 = 10$PUP2 EQU 3 SHL 4 sPunch —> UP2: (user punch 2)
sList values
0000 = I0SLTTY EQU O SHL & sList -> TTv:
0040 = IO$LCRT EQU 1 SHL & slist -> CRT:
0080 = I0$LLPT EQU 2 SHL & sList -> LPT: (physical line printer)
QOCO = I0$LUL1 EQU 2 SHL é slist -> UL1: (user list 1)
Figure 5-10. 1OBYTE equates

Function 8: Set IOBYTE

Function Code: C= 08H
Entry Parameters: E = New IOBYTE value

Exit Parameters: None

This listing shows you how to assign the logical reader device to the BIOS’s
console driver. It makes use of some equates from Figure 5-10.

Example

0007 = B$GETIO EQU 7 sGet IOBYTE

0008 = B$SETIO EQU] sSet IOBYTE

0005 = BDOS EQU S5 sBDOS entry point

000C = I0$RDRM EQU Q000$1100B sReader bit mask

0008 = I0SRUR1 EQU 2 SHL 2 sUser reader select
;This example shows how to assign the leogical
sreader to the user-defined reader #1 (UR1:)

0100 ORG 100H

0100 OEO7 MV1 C,BS$GETIO sFirst, get current IOBYTE

Chapter 5: The Basic Disk Operating System

87

0102 CDOS00 CALL BDOS
0105 E&4F3 ANI (NOT IOSRDRM) AND OFFH ;Preserve all but
;s reader bits
0107 Fé08 ORI T0$RUR1 tOR in new setting
0109 SF MoV E,A sReady for set IOBYTE
010A OEOB MVI C,B$SETIO 3Set new value
010C CDOS00 CALL BDOS
Purpose This function sets the IOBYTE to a new value which is given in register E.

Because of the individual bit fields in the IOBYTE, you will normally use the Get
IOBYTE function, change some bits in the current value, and then call the Set
IOBYTE function.

Noftes You can use the Set IOBYTE, Get IOBYTE, and Direct Console I/ O functions
together to create a small program that transforms your computer system into a
“smart” terminal. Any data that you type on your keyboard can be sent out of a
serial communications line to another computer, and any data received on the line
can be sent to the screen.

Figure 5-11 shows this program and illustrates the use of all of these functions.

For this program to function correctly, your BIOS must check the IOBYTE
and detect whether the logical console is connected to the physical console (with
the IOBYTE set to TTY:) or to the input side of the serial communications line
(with the IOBYTE set to RDR:).

Figure 5-11 shows how to use the Get and Set IOBYTE functions to make a
simple terminal emulator. For this example to work, the BIOS must detect the
Console Value as 3 (IO$CUCI) and connect Console Status, Input, and Output
functions to the communications line.

0004 = BS$SDIRCONIO EQU é sDirect console input/output

0007 = B$GETIO EQU 7 sGet IORYTE

0008 = BS$SETIO EQU] ;Set IOBYTE

000B = BSCONST EQU 11 sGet conscle status (sneak preview)

0005 = BDOS EQU S +BOOS entry point

0003 = I0$CONM EQU 0000%0011B sConsole mask for IOBYTE

0001 = 10$CCRT EQU 1 :Console -> CRT:

0003 = 10%CUC1 EQU 3 ;Console -> user console #1
TERM:

0000 CD2A00 CALL SETCRT iConnect console —-> CRT:
TERMSCKS:

0003 CDS200 CALL CONST 3Get CRT status

0006 CAZ400 Jz TERMSNOK I sNo console input

0009 CD4BOO CALL CONIN sGet keyboard character

000C CD3000 CALL SETCOMM sConnect console -> comm. line

000F CD4S00 CALL CONOUT sOutput to comm. line
TERM$CCS: ;Check comm. status

0012 CDS200 CALL CONST sGet "console" status

0015 CA0000 JZ TERM sNo incoming comm. character

0018 CD4BOO CALL CONIN 1Get incoming comm. character

Figure 5-14. Simple terminal emulator

88 The CP/M Programmer’s Handbook

001B CD2A00 CALL SETCRT ;Connect console -> CRT:
OC1E CDASO0 CALL CONOUT ;Output to CRT
0021 C30300 JMP TERMS$CKS sLoop back to check keyboard status
TERMENOKI :
0024 CDI000 CALL SETCOMM ;Connect console -> comm. line
0027 C31200 JMP TERM$CCS sLoop back. to check comm. status
SETCRT: ;Connect consale —-» CRT:
002A FS PUSH FSW sSave possihle data character
002B 0601 MVI B, IO$CCRT sConnect conscle -> CRT:
0020 C2I3IR00 JMF SETCON s Common code
SETCOMM: ;Connect console —-> comm. line
0030 FS PUSH PSW ;Save possible data character
0021 04603 MV1 R, I0sCUCt sConnect console -> comm. line
shOrop into SETCON
SETCON: ;Set consocle device
sNew code in B (in bits 1,0)
0033 CS PUSH B ;Save code
0034 OEO7 MVI C,B$GETIQ 31Get current I10BYTE
0036 CDOS00 CALL BDOS
0039 E6FC ANI (NOT IO$CONM) AND OFFH :;Preserve all but console
0Q3B C1 POF B sRecover required code
003C BO ORA B ;OR in new bits
003D SF MOV E,A ;Ready for setting
00Q3E OEQ® MVI C,B$SETIO sFunction code
0040 CDOS00 CALL BDOS
0043 F1 FOP PSW sRecover possible data character
0044 C9 RET
CONOUT:
0045 SF Moy E,A ;Get data byte for output
0044 OEQE MVI C, B$OIRCONIC sFunction code
0048 C30500 JMF BDOS sBDQS returns to CONQUT s caller
CONIN:
Q04B OEQS MVI C,B$DIRCONIO sFunction code
Q04D 1EFF MVI E, OFFH ; Indicate conscle input
O04F CI0S500 JMP BDOS ;BDOS returns to CONIN“s caller
CONST:
0052 OEOB MVI C, B$CONST sFunction code
Q0S4 CROS00 CALL BDOS
0057 B7 ORA A ;Set Z-flag to result
Q%8 C9 RET
Figure 5-11. (Continued)

Function 9: Display “$"-Terminated String

Example

Function Code:

C=09H

Entry Parameters: DE = Address of first byte of string

Exit Parameters:

0009
0005

000D
000A
0009

None

BS$PRINTS
BDOS

CR
LF
TAB

EQU b sPrint $-Terminated String
EQU S s BDOS entry point

EQU ODH sCarriage return

EQU OAH sLine feed

EQU O09H sHorizontal tab

Chapter 5: The Basic Disk Operating System 89

0000 ODOAOPSASEBMESSAGE: DB CR,LF,TAB, “This is a message’,CR,LF, %~
0017 OEO? MVI C, B$SPRINTS sFunction code
0019 110000 LX1 D, MESSAGE tPointer to message
001C CDOS00 CALL BDOS

Purpose This function outputs a string of characters to the console device. The address

of this string is in registers DE. You must make sure that the last character of the
string is “$”; the BDOS uses this character as a marker for the end of the string.
The “$” itself does not get output to the console.

While the BDOS is outputting the string, it expands tabs as previously de-
scribed, checks to see if there is an incoming character, and checks for CONTROL-S
(XOFF, which stops the output until another character is entered) or CONTROL-P
(which turns on or off echoing of console characters to the printer).

Notes One of the biggest drawbacks of this function is its use of “$” as a terminating
character. As a result, you cannot output a string with a “$” in it. To be truly
general-purpose, it would be better to use a subroutine that used an ASCII NUL
(00H) character as a terminator, and simply make repetitive calls to the BDOS
CONOUT function (code 2). Figure 5-3 is an example of such a subroutine.

Figure 5-12 shows an example of a subroutine that outputs one of several
messages. It selects the message based on a message code that you give it as a
parameter. Therefore, it is useful for handling error messages; the calling code can
pass it an 8-bit error code. You may find it more flexible to convert this subroutine
to using 00H-byte-terminated messages using the techniques shown in Figure 5-3.

1OM (Output message)

3This subroutine selects one of several messages based on

t the contents of the A register on entry. It then displays
3 this message on the ccnsole.

sEach message is declared with a "$" as its last character.
3 If the A register contains a value larger than the number
3 of messages declared, OM will output "Unknown Message".

1As an option, OM can output carriage return / line feed
3 prior to outputting the message text.

1Entry parameters
HL -> message table
This has the form 1

DB 3 sNumber of messages in table
DwW MSGO ;Address of text (A = Q)
DW MSG1 3A = 1)
DW MSG2 1A = 2)
MSGO: ;] ‘Message texts”

s.ete.
A = Message code (from O on up)
B = Qutput CR/LF if non-zero

s wr wp ws we we wn wa ws ve ue

Figure 5-42. Display $-terminated message on console

90 The CP/M Programmer’s Handbook

H Calling sequence

H LXI H, MSG$TABLE

H LDA MSGCODE

H MVI B, 0 s Suppress CR/LF

i CALL oM
0009 = BS$PRINTS EQU 9 sPrint $-terminated string
0005 = BDOS £Qu S ;BDOS entry point
000D = CR EQU ODH sCarriage return
000A = LF EQU OAH sline feed
0000 0D0A24 OMECRLF: og CR,LF, "%~
Q003 G5EESBESESFOMSLM: DB “Unknown Message$”

CMs
0013 FS PUSH PSW ;Save message cade
0014 ES PLSH H ;Save message table pointer
0015 78 Mav A, B ;Check if CR/LF required
0018 B7 ORA A
0017 CAZ2200 Jz OMENOCR No
CO1A 110000 LXI D, OM$CRLF s Output CR/LF
Q01D OEQ? MVI C, B$PRINTS
OC1F CDOS00 CALL BDGS

OM$NOCR:
0022 E1 POP H sRecover message table pointer
Q023 F1 POF PSW sRecover message code
0024 BE CMP M ;Compare message to max. value
0025 D23700 JNC QM$ERR tError-code not <= max.
0028 23 INX H sBypass max. value in table
0029 87 ADD A sMessage code ® 2
002A SF Mov E.A ;Make (code % 2) a word value
002E 1600 MVI 0,0
0020 19 DAD 1] ;HL -> address of message text
O02E SE Moy E.M :Get LS byte
Q02F 23 INX H sHL —-> MS byte
0030 58 Moy o.M ;Get MS byte

;DE -> message text itself

OM$PS: ;Print string entry point
0031 OEQ0? MVI C, BE$PRINTS sFunction code
0032 CDOSO0 CALL RDOS
0034 % RET ;Return to caller

OM$ERR: sError
0037 110300 LXI D, OM$UM sPoint to "Unknown Message"
Q03A C23100 JMP OMs$PS sPrint string

Figure 5-12. (Continued)

Function 10: Read Console String

Function Code:

C=0AH

Entry Parameters: DE = Address of string buffer

Exit Parameters:

Example
000A = B$SREADCONS
000S = BDOS

EQU
EQU

10

String buffer with console bytes in it

sRead Console String
s BDOS entry point

0050

0000

0001
0002

0052
0054
0057

Purpose

Notes

Chapter 5: The Basic Disk Operating System 91

= BUFLEN EQU 80 sBuffer length

BUFFER: sConsole input buffer
SO BUFMAXCH: DB BUFLEN :;Max. no. of characters in
s buffer

00 BUFACTCH: DB (o] sActual no. of characters input
BUFCH: DS BUFLEN ;Buffer characters

OEOA MVI C, B$READCONS sFunction code
110000 LXI D, BUFFER sPointer to buffer
CDOS00 CALL BDOS

This function reads a string of characters from the console device and stores
them in a buffer (address in DE) that you define. Full line editing is possible: the
operator can backspace, cancel the line and start over, and use all the normal
control functions. What you will ultimately see in the buffer is the final version of
the character string entered, without any of the errors or control characters used to
do the line editing.

The buffer that you define has a special format. The first byte in the buffer tells
the BDOS the maximum number of characters to be accepted. The second byte is
reserved for the BDOS to tell you how many characters were actually placed in the
buffer. The following bytes contain the characters of the string.

Character input will cease either when a CARRIAGE RETURN is entered or when
the maximum number of characters, as specified in the buffer, has been received.
The CARRIAGE RETURN is not stored in the buffer as a character—it just servesas a
terminator.

If the first character entered is a CARRIAGE RETURN, then the BDOS sets the
“characters input” byte to 0. If you attempt to input more than the maximum
number of characters, the “characters input” count will be the same as the
maximum value allowed.

This function is useful for accepting console input, especially because of the
line editing that it allows. It should be used even for single-character responses,
such as “Y/N” (yes or no), because the operator can type “Y”, backspace, and
overtype with “N”. This makes for more “forgiving” programs, tolerant of humans
who change their minds.

Figure 5-13 shows an example subroutine that uses this function. It accepts
console input, matches the input against a table, and transfers control to the
appropriate subroutine. Many interactive programs need to do this; they accept an
operator command and then transfer control to the appropriate command proces-
sor to deal with that command.

This example also includes two other subroutines that are useful in their own
right. One compares null-byte-terminated strings (FSCMP), and the other con-
verts, or “folds,” lowercase letters to uppercase (FOLD).

92 The CP/M Programmer’s Handbook

1 RSA
sReturn subprocessor

strings,

that is,

strings,
cleared.

Entry parameters

bW

oW
TEXTO: DB
TEXT1: DR
SUBPROCO:

SUBPROC1 :

Exit parameters

input s
Carry Clear,

Carry Set, HL

:Calling sequence

H LX1 H, SUBI

H CALL RzA

¥ C ERROR

i LXI D, RET!

H PUSH

$ PCHL

H RETURN:
000A = B$READCONS EQU
0005 = BDOS EQu
0050 = RSASBL EQU
0000 S0 RSASBUF: DR
0001 00 RSASACTC: DR
0002 RSASBUFC: Ds
0052 00 DB

RSAs
0053 2B DCx H
0054 2B ncx H
0055 ES PUSH H
0058 OEOA MVI C, B$R
0058 110000 LX1 D, RSA:
005B CDOSQO CALL BDOS
00SE 210100 LXI H, RSA:
0061 5E Mav €M
Q062 1600 MVI 0,0
0064 23 INX H
0065 19 DAD D
00646 3800 MVI M, 0

RSASML:
0048 E1 POP H
0069 23 INX H
006A 23 INX H
006RB SE Mav E.M

address

$This subroutine returns one of several addresses selected
from a table by matching keyboard input against specified
It is normally used to switch contrel to a
particular subprocesscor according toc an cption entered

by the operator from the keyboard.

Character string comparisons are performed with case-faolding:
lowercase letters are converted to uppercase.

If the cperator input fails to match any of the specified
then the carry flag is set.

Ctherwise, it is

HL ~> Subprocessor saelect table
This has the form :
DwW

TEXTO, SUBPROCO
TEXT1, SUBPROC1

L]

sTerminator

“add”,Q ;00H-byte terminated
“subtract’,0

tring).

Code for processing ADD function.

Code for processing SUBTRACT function.

DE -> operator input string (OOH-terminated

HL -> subprocessor.

= Q000H.
PROCTAR

URN

10

80
RSASBL
o]

RSASBL
Q

EADCONS
$BLIF

$ACTC

; Subprocessar table

sCarry set only on error
sFake CALL instruction

sPush return address on stack
3"CALL" to subprocessor

tRead console string into buffer
s BDOS entry point

sBuffer length

sMax. no. of characters
sActual no. of characters
;Buffer characters
s;Safety terminator

sAdjust Subprocessor painter
5 for code below
sTop of stack (TOS)
sFunction code

sDE -> huffer

sRead operator input and

;3 Convert to OOH-terminated

sHL -> actual no. of chars. input
sGet actual na. of chars. input
Make intc word value

sHL ~> first data character

HL -> first UNUSED character in buffer
1Make input buffer OOH terminated

-» subproc. table - 2

;Compare input to specified values
5 Main loop

sRecover subprocessor table pointer
sMove to top of next entry

sHL —> text address

sGet text address

Figure 5-13.

Read console string for keyboard options

Chapter 5: The Basic Disk Operating System

93

006C 23 INX H
006D 56 MoV DM sDE ~> text
006E 7A MOV A,D sCheck if at end of subprocessor table
006F B3 ORA 3
0070 CA83500 Jz RSASNFND tMatch not found
0073 23 INX H sHL —-> subprocessor address
0074 ES PUSH H ;Save ptr. to subprocessor table
0075 210200 LXI H, RSASBUFC sHL -> input characters
0078 CD8ACO CALL F3scMP sFolded string compare
007B C26800 JNZ RSASML sNo match, move to next entry
007E E1l POP H sMatch found, recover subprocessar ptr.
007F SE MoV E,M ;Get actual subprocessor address
0080 23 INX H
0081 56 MoV o.M sDE ~> Subprocessor code
0082 ER XCHG tHL -> Subprocessor code
0083 B7 DRA A sClear carry (match found)
0084 C9 RET

RSASNFND:
0083 210000 LX1 H,0 sIndicate no match found
0088 37 STC ;Set carry
0089 C9 RET

s FSCMP

sCompare folded (lowercase to upper) siring.

sThis subroutine compares two OOH-byte terminated

sstrings and returns with the condition flags set

sto indicate their relationship.

sEntry parameters

H DE -> string 1

H HL -> string 2

sExit parameters

H Flags set (based on string 1 - string 2, on a

H character-by-character basis)

FSCMP:
008A 1A LDAX o ;Get string 1 character
008B CDYEQOO caLL FOLD 3Fold to uppercase
008E FS PUSH PSW 1Save string 1 character
008F 7€ MOV AM 1Get string 2 character
Q090 CDYEQO CALL FoLD ;Fold to uppercase
0093 47 MoV B/ A ;Save string 2 character
0094 F1 POP P3W tRecover string 1 character
0095 B8 CMP B 3String 1 - string 2
0096 CO RNZ ;Return if not equal
0097 B7 ORA A sEqual, so check if end of strings
0098 C8 RZ iYes
0099 13 INX D sNo, update string 1 pointer
00%A 23 INX H 5 and string 2 pointer
QOB C38A00 JMP FSCMP ;Check next character

iFOLD

sFolds a lowercase letter (a-z) to uppercase (A-1)

3 The character to be folded is in A on entry and on exit.

FOLD:
009E 4F MOV C,A sPreserve input character
009F 3E&0 MVI A,’a’~1 sCheck if folding needed
00A1 B9 CMP c iCompare to input character
00A2 D2AF00 JNC FOLDX sNo, char. is <= "a"
00AS 3E7A MVI A, vz’ ;Check if < "z
Q0A7 B9 CHP C
00A8 DAAFQO JC FOLDX sNo, char. is > "z"
00AB 3EDF MV1 A, ODFH 3Fold character
00AD Al ANA =4
O0AE C9 RET

FOLDX:
00AF 79 MOV A,C sRecaver original input char,
00BO C9 RET

Figure 5-43. (Continued)

94 The CP/M Programmer’s Handbook

Function 11: Read Console Status

Function Code: C= 0BH

Entry Parameters: None

Exit Parameters: A = O0H if no incoming data byte
A = OFFH if incoming data byte

Example
000B = BS$CONST EQu 11 :Get Console Status
0005 = BDOS EQU S sBDOS entry point
0000 OEOB MvVI C, B$CONST sFunction coade
0002 CDOS00 CALL BDOS sA = 00 if no character waiting
sA = OFFH if chararcter waiting
Purpose This function tells you whether a console input character is waiting to be

processed. Unlike the Console Input functions, which will wait until there is input,
this function simply checks and returns immediately.

Notes Use this function wherever you want to interrupt an executing program if a
console keyboard character is entered. Just put a Console Status call in the main
loop of the program. Then, if the program detects that keyboard data is waiting, it
can take the appropriate action. Normally this would be to jump to location
0000H, thereby aborting the current program and initiating a warm boot.

Figure 5-11 is an example subroutine that shows how to use this function.

Function 12: Get CP/M Number

Function Code: C=0CH
Entry Parameters: None
Exit Parameters: HL = Version number code

Example
Q00C = B$GETVER EQu 12 3Get CP/M Version Number
0005 = BDOS EQU 5 ;BDOS entry point
0000 OEOC Mv1 C,BSGETVER ;Function code
0002 CDOS00 CALL BDOS tH = 00 for CP/M
sL = version (e.g. 22H for 2.2}
Purpose This function tells you which version of CP/M you are currently running. A

two-byte value is returned:

H = 00H for CP/M, H = 0lH for MP/M
L = O00H for all releases before CP/M 2.0

L=20H forCP/M 2.0,21H for2.1,22H for 2.2, and so on for any subsequent
releases.

Chapter 5: The Basic Disk Operating System 95

This information is of interest only if your program has some version-specific
logic built into it. For example, CP/M version 1.4 does not support the same
Random File Input/Output operations that CP/M 2.2 does. Therefore, if your
program uses Random I/O, put this check at the beginning to ensure that it is
indeed running under the appropriate version of CP/M.

Notes Figure 5-14 is a subroutine that checks the current CP/M version number, and,
if it is not CP/M 2.2, displays an explanatory message on the console and does a
warm boot by jumping to location 0000H.

Function 13: Reset Disk System

Function Code: C= 0DH
Entry Parameters: None
Exit Parameters: None

3 CCPM
sCheck if CF/M
sThis subroutine determines the version number of the
soperating system and, if not CP/M version 2, displays
jan error message and executes a warm boat.
sEntry and exit parameters
H None
sCalling sequence
H CALL CCPM sWarm boots if not CP/M 2
0007 = B$PRINTS EGU b4 ;Display $-terminated string
000C = B$GETVER EQU 12 ;Get version number
000S = BRDOS EQU S 3BROOS entry point
000D = CR EQU ODH sCarriage return
Q00A = LF EQU OAH sLine feed
0000 ODOA CCPMM: DB CR,LF
0002 5468497320 ju:] “This program can only run under CP/M version 2.°
0031 OD0OA24 DB CR,LF, "%~
CCPM:
0034 oEOC MVI C,B$GETVER 3Get version number
003& €DOS00 CALL BDOS
0039 7C MOV AH tH must be O for CP/M
003A B7 ORA A
003B C24700 JNZ CCPME ;Must be MF/M
003E 7D MOV AL sL = version number of CF/M
QO3F E&FO ANI OFOH iVersion number in MS nibble
0041 FE20 CPI 20H sCheck if version 2
0043 €C24700 JINZ CCPME sMust be an earlier version
00446 C7? RET 3Yes, CP/M version 2
CCPME: sError
0047 OEQ9 MVI C,B$PRINTS sDisplay error message
0049 110000 LX1 D, CCPMM
004C CDOS00 CALL BOOS
QO04F C20000 JMP [¢] sWarm boot

Figure 5-14. Determine the CP/M version number

96 The CP/M Programmer’s Handbook

Example

Purpose

Notes

000D = B$DSKRESET EQU 13 tReset Disk System
0005 = BDOS EQU S s BDOS entry point
0000 OEOD MVI C,B$DSKRESET ;Function code
0002 CDOS00 CALL BDOS
This function requests CP/M to completely reset the disk file system. CP/M

then resets its internal tables, selects logical disk A as the default disk, resets the
DMA address back to 0080H (the address of the buffer used by the BDOS to read
and write to the disk), and marks all logical disks as having Read/ Write status.

The BDOS will then have to log in each logical disk as each disk is accessed.
This involves reading the entire file directory for the disk and rebuilding the
allocation vectors (which keep track of which allocation blocks are free and which
are used for file storage).

This function lets you change the diskettes under program control. If the
operator were to simply change diskettes, without CP/M knowing about it, the
next access to the (now different) diskette would force CP/M to declare the disk
Read-Only, thwarting any further attempts to write on the diskette. If you need to
reset one or two disks, rather than the entire disk system, look ahead to the Reset
Disk function (code 37) described at the end of this chapter.

Figure 5-15 shows a simple subroutine that outputs a message on the console,
requesting that the diskette in a specified drive be changed. It then issues a Reset
Disk function call to make sure that CP/M will log in the diskette on the next
access to the drive.

;CDISK

sChange disk

;This subroutine displays a message requesting the
ruser to change the specified logical disk, then waits
;for a carriage return to be pressed. It then issues
sa Disk Reset and returns to the caller.

;Entry parameters
H A = Logical disk to be changed (A =0, B = {)

sExit parameters
H None

;Calling sequence
H MVI A, 0O ;Change drive A:

CALL CDISK

000D = B$DSKRESET EQU i3 ;Disk Reset function code
0009 = B3PRINTS EQU ? sPrint $-terminated string
0001 = B$CONIN EQU 1 ;Get console input
0003 = BDOS EQL S $BIOS entry point

Figure 5-15.

Reset requested disk drive

Chapter 5: The Basic Disk Operating System 97

000D = CR EQU ODH

000A = LF EQU 0AH

0000 ODOA436361CDISKM: DB CR,LF, “Change logical disk -

0016 00 CDISKD: DB o}

0017 3A20&616E64 DB ‘3 and press Carriage Return to continues”
CDISK:

003F Cé40° ADI YA -1 sConvert to letter

0041 321400 STA CDISKD 3sStore in message

0044 OEO% MVI C, BSPRINTS ;Display message

0044 110000 LXI D, CDISKM

0049 CDOS00 CALL BDOS
CDISKW:

004C OEO1 MvI C, BSCONIN sGet keyboard character

004E CDOS00 CALL BDOS

0051 FEOD CPI ER

0053 C24C00 JNZ CDISKW

0056 OEOD MVI C, B$DSKRESET sNow reset disk system

0058 CDOS00 CALL BDOS

0058 C% RET

Figure 5-15.

Reset requested disk drive (continued)

Function 14: Select Logical Disk

Function Code: C =0EH
Entry Parameters: E = Logical Disk Code
00H = Drive A

01H = Drive B and so on
Exit Parameters: None

Example
000E = B$SELDSK EGU 14 1Select Logical Disk
0005 = BDOS EQU 5 }BDOS entry point
0000 OEOE MVI C,B$SELDSK sFunction code
0002 1E00 MvVI E,O JE = 0 for Az, 1 for B: etc.
0004 CDOS0O CALL BDOS
Purpose This function makes the logical disk named in register E the default disk. All

Notes

subsequent references to disk files that do not specify the disk will use this default.

When you reference a disk file that does have an explicit logical disk in its name
you do not have to issue another Select Disk function; the BDOS will take care of
that for you.

Notice the way in which the logical disk is specified in register E. It is not the
same as the disk drive specification in the first byte of the file control block. In the
FCB, a value of 00H is used to mean “use the current default disk” (as specified in
the last Select Disk call or by the operator on the console). With this function, a

98 The CP/M Programmer’s Handbook

Function 15:

Example

value of 00H in register A means that A is the selected drive, a value of 01H means
drive B, and so on to OFH for drive P, allowing 16 drives in the system.

If you select a logical disk that does not exist in your computer system, the
BDOS will display the following message:

BDOS Err on J: Select

If you type a CARRIAGE RETURN in order to proceed, the BDOS will do a warm
boot and transfer control back to the CCP. To avoid this, you must rely on the
computer operator not to specify nonexistent disks or build into your program the
knowledge of how many logical disk drives are on the system.

Another problem with this function is that you cannot distinguish a logical
disk for which the appropriate tables have been built into the BIOS, but for which
there is no physical disk drive. The BDOS does not check to see if the drive is
physically present when you make the Select Disk call. It merely sets up some
internal values ready to access the logical disk. If you then attempt to access this
nonexistent drive, the BIOS will detect the error. What happens next is completely
up to the BIOS. The standard BIOS will return control to the BDOS, indicating an
error condition. The BDOS will output the message

BDOS Err on C: Bad Sector

You then have a choice. You can press CARRIAGE RETURN, in which case the BDOS
will ignore the error and attempt to continue with whatever appears to have been
read in. Or you can enter a CONTROL-C, causing the program to abort and CP/M to
perform a warm boot.

Note that the Select Disk function does not return any values. If your program
gets control back, you can assume that the logical disk you asked for at least has
tables declared for it.

Open File

Function Code: C = 0FH
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
O00QF = B$OPEN EQU 15 ;O0pen File
0008 = BDOS EQU S5 $BDOS entry point
FCB: ;File control block
0000 00 FCB$DISK: DB (o] ;Search on default disk drive
Q001 44494CAS4EFCBSNAME: DB “FILENAME“ sFile name
0009 545950 FCB$TYP: DB ‘TYP” sFile type
000C 00 FCBSEXTENT: DB] sExtent
Q000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
000F 00 FCB$RECUSED: DB (o] sRecords used in this extent
0010 0Q0000000OFCB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,90,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB 0 s Sequential rec. to read/write

Purpose

Notes

Chapter 5: The Basic Disk Operating System 99

0021 0000 FCB$RANREC: DW o] sRandom rec. to read/write
0023 00 FCBS$RANRECO: DB (o] 3Random rec, overflow byte (MS)
0024 OEOF MVI C. B$OPEN sFunction code

0024 110000 LXI D,FCB sDE -> File control block

0029 CDOS00 CALL BDOS ;A = OFFH if file not found

This function opens a specified file for reading or writing. The FCB, whose
address must be in register DE, tells CP/M the user number, the logical disk, the
file name, and the file type. All other bytes of the FCB will normally be set to 0.

The code returned by the BDOS in register A indicates whether the file has
been opened successfully. If A contains 0FFH, then the BDOS was unable to find
the correct entry in the directory. If A=0, 1,2, or 3, then the file has been opened.

The Open File function searches the entire file directory on the specified
logical disk looking for the file name, type, and extent specified in the FCB; that is,
it is looking for an exact match for bytes 1 through 14 of the FCB. The file name
and type may be ambiguous; that is, they may contain “?” characters. In this case,
the BDOS will open the first file in the directory that matches the ambiguous name
in the FCB. If the file name or type is shorter than eight or three characters
respectively, then the remaining characters must be filled with blanks.

When the BDOS searches the file directory, it expects to find an exact match
with each character of the file name and type, including lowercase letters or
nongraphic characters. However, the BDOS uses only the least significant seven
bits of each character—the most significant bit is used to indicate special file status
characteristics, or attributes.

By matching the file extent as well as the name and type, you can, if you wish,
open the file at some point other than its beginning. For normal sequential access,
you would not usually want to do this, but if your program can predict which file
extent is required, this is a method of moving directly to it.

Itis also possible to open the same file more than once. Each instance requires
aseparate FCB. The BDOS is not aware that this is happening, It is really only safe
to do this when you are reading the file. Each FCB can be used to read the file
independently.

Once the file has been found in the directory, the number of records and the
allocation blocks used are copied from the directory entry into the FCB (bytes 16
through 31). If the file is to be accessed sequentially from the beginning of the file,
the current record (byte 32) must be set to zero by your program.

The value returned in register A is the relative directory entry number of the
entry that matched the FCB. As previously explained, the buffer that CP/M uses
holds a 128-byte record from the directory with four directory entries numbered 0,
1, 2, and 3. This directory code is returned by almost all of the file-related BDOS
functions, but under normal circumstances you will be concerned only with
whether the value returned in A is OFFH or not.

Figure 5-16 shows a subroutine that takes a 00H-byte terminated character

100 The CP/M Programmer’s Handbook

string, creates a valid FCB, and then opens the specified file. Shown as part of this
example is the subroutine BF (Build FCB). It performs the brunt of the work of
converting a string of ASCII characters into an FCB-style disk, file name, and

typ&
5 OPENF
;Open File
;Given a pointer to a OOH-byte-terminated file name,
;and an area that can be used for a file control
sblock, this subroutine builds a valid file control
sblock and attempts to open the file.
sIf the file is opened, it returns with the carry flag clear.
s If the file cannot be opened, this subroutine returns
swith the carry flag set.
sEntry parameters
H DE ~> 36-byte area for file control block
[HL ~> QOH-byte terminated file name of the
H form i{disk:} Name {.typ}
3 (disk and typ are optional)
jExit parameters
s Carry clear : File opened correctly.
H Carry set t File not opened,
3jCalling Sequence
H LXI D,FCB
H LXI H, FNAME
H CALL QOPENF
i JC ERROR
swhere
s FCB: Ds 36 ;Space for file control block
sFNAME: DB ‘ArTESTFILE.DAT’, 0O
Q00F = B$OPEN EQu 15 sFile Open function code
0005 = BDOS EQU] $BDOS entry point
OPENF:
0000 DS PUSH 0 sPreserve pointer tao FCB
0001 CDOCOO CALL BF sBuild file control blaock
0004 OEOF Mv1 C, BSOPEN
0004 D1 POP D 3sRecover pointer to FCB
0007 CDOS00 CALL BDOS
000A 17 RAL 21 1f A=OFFH, carry set
sotherwise carry clear
Q00B C9 RET
s BF
3Build file control block
s This subroutine formats a OOH-byte-terminated string
s{presumed to be a file name) into an FCB, setting
sthe disk and file name and type and clearing the
sremainder of the FCB to O0°s.
3sEntry parameters
H DE -> file control block (36 Bytes?
3 HL -> file name string (OOH-byte-terminated)
sExit parameters
The built file control block
sCalling sequence
l LXI n,FcB
H LXI H, F ILENAME
3 CALL BF
BF:

Figure 5-16. Open file request

Chapter 5: The Basic Disk Operating System

404

000C
000D
QQ0E
O00F
0011
0014
Q01S

0018
0019

001C

001D
Q01E
001F
0021

0024
0026
0029

002A
oo2C

002F
0031
0033
0036

0037
0038
0039
003C
003E
0041

0043
0044

0047
0048

0017 23

C31D000

AF

12

13
QE08
CD3700

FE2E
C22A00
23

OE03
€p3700

0400
OE18
CD&400
cy

7€

CAS700
FE2A
CASCO0
FE2E

CAS700
12

13
23

INX H ;Check if 2nd char. is ":"
MoV AM sGet character from file name
Bex H sHL -> now back at 1st char.
CP1 ‘37 sIf "3", then disk specified
JNZ BFSND sNo disk
Mov A M ;Get disk letter
ANI 0001%1114B sA (41H) -> 1, B (42H) > 2 ...
INX H sBypass disk letter
INX H sBypass ":"
JMP BF$sSD :1Store disk in FCB
BF$ND: sNo disk present
XRA A sIndicate default disk
BF$SD:
STAX D 3Store disk in FCB
INX D sOE -> 1st char. of name in FCB
MvI c,8 ;File name lenath
CALL BFS$GT 31Get token
sNote —— at this point, BF$GT
3will have advanced the string
spointer to either a "." or
;O0H byte
CPI ‘e’ sCheck terminating character
JNZ BFSNT sNo file type specified
INX H ;Bypass "." in file name
BFS$NT: R
MVI C,3 sFile type length
cALL BF$GT sGet token
sNote -~ if no file type is
;present BF$GT will merely
sspacefill the FCB
MvVI B, O 30-fill the remainder of the FCB
MVI C,24 136 - 12 (disk, name, type = 12 chars.?}
CALL BFSFT sRe-use fill token S/R
RET
s BF$GT

jBuild FCB —- get token

;This subroutine scans a file name string,

splacing characters into a file control block.

s0n encountering a terminator character ("." or OQH),
sthe remainder of the token is space filled.

;I1f an "%" is encountered, the remainder of the token
1is filled with "?¢,

sEntry parameters
DE -> Into file control black
HL -> Into file name string
C = Maximum no. of characters in token

sExit parameters
H File contrel block contains next token
5 A = Terminating character

BF$GT:
MOV AM 3Get next string character
ORA A sCheck if end of string
Jz BFS$SFT ;Yes, space fill token
€Pl g 3Check if ?-fill required
Jz BFSQFT sYes, fill with 7
CP1 ‘a sAssume current token is file
s name

sCheck if file type coming up
7(1f current token is file
stype this check is

sbenignly redundant)

Jz BF$SFT iYes, space fill token

STAX o] sNone of the above, so store
$in FCB

INX D sUpdate FCB pointer

INX H sUpdate string pointer

Figure 5-16. (Continued)

102 The CP/M Programmer’s Handbook

0049 0D DCR c ;Countdown on token length o
004A 23700 JNZ BF$GT $8till more characters to go
BF$SKIP: $Skip chars. until "." or OOH
004D 7E Mav AM sGet next string character
QO04E B7 ORA A sCheck if QOH
004F C8 RZ sYes
0050 FE2E CPI e ;Check if . "
0052 Ccg8 RZ sYes
0053 23 INX H ;Update string pointer tonly)
0054 C34D00 JMP BF$3KIP 3Try next character
BF$SFT: :Space fill token
0057 0620 MVI B,” ~
0059 C36400 JMP BFS$FT sCommon fill token code
sBF$FT returns to caller
BF$QFT: sQuestion mark fill token
QOSC 0&3F MVI R,"7"
005E CD&300 CALL BFS$FT sCommon fill token code
0061 C34D00 JMP BF$SKIP sBypass multiple "x" etc.
BFS$FT: 3Fill token
0084 FS PUSH PSW 1Save terminating character
0065 78 MoV AB 5Get fill characer
BF$FTL: ; Inner loop
0066 12 STAX D ;Store in FCB
0067 13 INX D ;Update FCE Pointer
Q048 0D DCR C sDowndate residual count
0067 C26400 JNZ BFS$FTL sKeep going
006C F1 POP PSW sRecover terminating character
004D C? RET

Figure 5-16. (Continued)

Function 16: Close File

Function Code: C=10H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
Example
0010 = B$CLOSE EQU 16 iClose File
0005 = BDOS EQU S sBDOS entry point
0000 FCB: ns 36 sFile control block
0024 OE10 MVI C, B$CLOSE sFunction code
0024 110000 LXI D,FCB ;DE -> File control block
0029 CDROS00 CALL BDOS ;A = 0,1,2,3 if successful
sA = OFFH if file name not
; in directory
Purpose This function terminates the processing of a file to which you have written

information. Under CP/M you do not need to close a file that you have been
reading. However, if you ever intend for your program to function correctly under
MP/M (the multi-user version of CP/M) you should close all files regardless of

their use.

Noiles

Chapter 5: The Basic Disk Operating System 103

The Close File function, like Open File, returns a directory code in the A
register. Register A will contain OFFH if the BDOS could not close the file
successfully. If A is 0, 1, 2, or 3, then the file has been closed.

When the BDOS closes a file to which data has been written, it writes the
current contents of the FCB out to the disk directory, updating an existing
directory entry by matching the disk, name, type, and extent number in the same
manner that the Open File function does.

Note that the BDOS does not transfer the last record of the file to the disk
during the close operation. It merely updates the file directory. You must arrange
to flush any partly filled record to the disk. If the file that you have created is a
standard CP/M ASCII text file, you must arrange to fill the unused portion of the
record with the standard 1AH end-of-file characters as CP/M expects, as
explained in the section on the Write Sequential function (code 21).

Function 17: Search for First Name Match

Example

Purpose

Function Code: C=1H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
0011 = B$SEARCHF EQU 17 ;Search First
0005 = BDOS EQU S sBDOS entry point
FCB: ;File control block

0000 00 FCR$DISK: DB 4] sSearch on default disk drive
0001 46494CAS3FFCBSNAME: DB ‘FILE????" sAmbigucus file name
0009 S43F50 FCB$TYP: DE ‘TR sAmbiguous file type
000C 00 FCBSEXTENT: DB [d] ;Extent
000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
000F 00 FCBS$RECUSED: DB [¢] sRecords used in this extent
0010 Q000000000FCBSABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB o] ;Sequential rec. to read/write
0021 0000 FCB$RANREC: Du 0 sRandom rec. to read/write
0023 00 FCB$RANRECO: e (¢} sRandom rec. overflow byte (MS)
0024 ©E11 MV1 C, B$SEARCHF sFunction code g
0026 110000 LXI D,FCB sDE -> File control block
0029 €DOS00 CALL BDOS 1A = 0,1,2,3,

s(A % 32) + DMA ~> directory

s entry

3A = OFFH if file name not

s found

This function scans down the file directory for the first entry that matches the
file name, type, and extent in the FCB addressed by DE. The file name, type, and
extent may contain a “?” (ASCII 3FH) in one or more character positions., Where
a*“?” occurs, the BDOS will match any character in the corresponding position in
the file directory. This is known as ambiguous file name matching.

The first byte of an FCB normally contains the logical disk number code. A
value of 0 indicates the default disk, while 1 means disk A,2is B,andsoonuptoa

104 The CP/M Programmer’s Handbook

Notes

possible maximum of 16 for disk P. However, if this byte contains a “?”, the BDOS
will search the default logical disk an will match the file name and type regardless
of the user number. This function is normally used in conjunction with the Search
Next function (which is described iminediately after this function). Search First, in
the process of matching a file, leaves certain variables in the BDOS set, ready fora
subsequent Search Next.

Both Search First and Search Next return a directory code in the A register.
With Search First, A = 0FFH when no files match the FCB; if a file match is
found, A will have a value of 0, 1, 2, or 3.

To locate the particular directory entry that either the Search First or Search
Next function matched, multiply the directory code returned in A by the length of
adirectory entry (32 bytes). This is easily done by adding the A register to itself five
times (see the code in Figure 5-17 near the label GNFC). Then add the DMA
address to get the actual address where the matched directory entry is stored.

There are many occasions when you may need to write a program that will
accept an ambiguous file name and operate on all of the file names that match it.
(The DIR and ER A commands built into the CCP are examples that use ambigu-
ous file names.) To do this, you must use several BDOS functions: the Set DMA
Address function (code 26, described later in this chapter), this function (Search
First), and Search Next (code 18). All of this is shown in the subroutine given in
Figure 5-17.

s GNF

;This subroutine returns an FCB setup with either the
sfirst file matched by an ambiguous file name, or (if
sspecified by entry parameter) the next file name.

sNote : this subroutine is context sensitive. You must
3 not have meore than one ambiguous file name
sequence in Process at any given time.

$O3> Warning : This subroutine changes the DMA address
33> inside the BDOS.
sEntry parameters
H DE -> Possibly ambiguous file name
3 (Q0-byte terminated)
H (Only needed for FIRST request)
H HL -> File control block
A 0 : Return FIRST file name that matches

= NZ : Return NEXT file name that matches

sExit parameters

3Carry set : A = FF, no file name matches

H A not = OFFH, error in input file name
sCarry clear : FCB setup with next name

H HL —> Directory entry returned
H by Search First/Next
$Calling sequence

; LXI D, FILENAME

H LXI H,FCB

Figure 5-17.

Search first/next calls for ambiguous file name

Chapter 5: The Basic Disk Operating System

105

] MVI A,0 yor MVI A, 1 for NEXT
4 CALL GNF
0011 = B$SEARCHF EQU 17 sSearch for first file name
0012 = B$SEARCHN EGU 18 3sSearch for next file name
001A = B$SETOMA EQU 26 ;Set up DMA address
0008 = BDOS EQU S sBDOS entry Point
0080 = GNFDMA EQU 80H sDefault DMA address
000D = GNFSVL EQU 13 3Save length (no. of chars to move)
0024 = GNFFCL EQU 36 sFile control block length
0000 GNFSV: DS GNFSVL ;Save area for file name/type
GNF s
000D ES PUSH H ;Save FCB pointer
QOOE DS PUSH D ;Save file name pointer
O000F FS PUSH PSHW sSave first/next flag
0010 118000 LX1 D, GNFDMA 1Set DMA to known address
0013 OElA MV1 C, B$SETDMA sFunction code
0015 CDOS00 CALL BDOS
0018 Fi FPOP PSW tRecover first/next flag
0019 Et POP H sRecover file name pointer
001A D1 POP D 3sRecover FCB pointer
O01B D5 PUSH D sResave FCB pointer
001C B7 ORA A sCheck if FIRST or NEXT
001D C23E00 JNZ GNFN sNEXT
0020 CD9300 CALL BF tBuild file control block
0023 Et POP H sRecover FCB pointer (to balance stack)
0024 D8 RC jReturn if error in file name
0025 ES PUSH H sResave FCB pointer
sMove ambiguous file name to
jsave area
tHL -> FCB
0026 110000 LXI D, GNFsSY $DE ~> save area
0029 OEOD MVI C, GNFSVL ;Get save length
002B CDSAOCO CALL MOVE
002€ D1 POP D 1Recover FCB pointer
002F DS PUSH D sand resave
0030 OE11l MVI C, B$SEARCHF sSearch FIRST
0032 CDO300 CALL BDOS
0035 E1 POP H sRecover FCB pointer
0036 FEFF CPI1 OFFH sCheck for error
0038 CA7DOO JZ GNFEX sErvor exit
003B C3SD0O JMP GNFC s Common code
GNFN: sExecute search FIRST to re-—
sestablish contact with
sPreviocus file
sUser’s FCB still has
sname/type in it
O03E CD7F00 CALL GNFZF sZero—-fill all but file name/type
0041 D1 POP D sRecover FCB address
0042 D3 PUSH D jand resave
0043 0OE11 MVI C, B$SEARCHF sRe-find the file
0045 CDOS00 CALL BDOS
0048 Di POP D ;Recover FCB pointer
004% DS PUSH D jand resave
004A 210000 LXI H, GNFSV tMove file name from save area
sinto FCB
004D OEOD MVI C, GNFSVL sSave area length
O0AF CDSAOO CALL MOVE
0052 OE12 MVI C, B$SEARCHN 3 Search NEXT
00354 CDO500 CALL BDOS
0057 E1 POP H tRecover FCB address
0058 FEFF CPl OFFH tCheck for error
003A CA7D0C Jz GNFEX sError exit
GNFCs
005D €5 PUSH H ySave FCB address
O0SE 87 ADD A 3Multiply BDOS return code » 32
Figure 5-47. (Continued)

106 The CP/M Programmer’s Handbook

00SF 87
0060 87
0061 87
0062 87
00463 218000
0066 SF

0067 1600
0069 19

006A D1
006B ES
006C DS
0060 QEOD
QQ&F CDBACO
0072 3A0000
0075 D1
0076 12

0077 CD7F00
007A El

0078 AF
007¢C C9

007D 37
007E C9

ADD A s® 4
ADD A 1% 8
ADD A 3% 16
ADD A 3% 32
LXI H, GNFIIMA tHL ~> DMA address
MOV E,A sMake (code ®* 32) a word value
;in DE
MVI 0,0
DAD D sHL -> file”s directory entry
;Move file pame into FCRBR
POP D ;Recover FCR address
PUSH H ;Save directory entry pointer
PUSH D sand resave
MvI C, GNFSVL sLength of save area
CALL MOVE
LDA GNF SV ;Get disk from save area
POP D sRecover FCB address
STAX D t10verwrite user number in FCB
sSet. up to zero-fill tail end
sof FCB
CALL GNF ZF sZero-fill
FOP H sRecaover directory entry
spointer
XRA A sClear carry
RET
GNFEX)
STC sSet carry to indicate error
RET
3 GNFZF
3Get next file —— zero fill

sThis subroutine zero-fills the bytes that follow the
sfile name and type in an FCB.

sEntry parameters

’ DE -> file control block
GNFZF:
O07F 210D00 LXI H, GNFSVL sBypass area that holds file name
0082 19 DAD D tHL -> FCB + GNFSVL
0083 54 MOV 0,H $DE -> FCB + GNFSVL
0084 SDh MOV E,L
0083 13 INX D sDE -> FCB + GNFSVL + 1
0086 3600 MVI M, 0 sFCB + GNFSVL = O
0088 0EL7 MVI C,GNFFCL-GNFSVL j;Remainder of file control blaeck
sDrop into MOVE
;Spread 0’s through remainder
;of FCB
:MOVE
1This subroutine moves C bytes from HL to DE.
MOVE:
008a 7E MoV A M ;Get source byte
008B 12 STAX D ;Save destination byte
008C 13 INX D s Increment destination pointer
008D 23 INX H s Increment source pointer
O08E on OCcR C ;Decrement count
008F C28A00 JNZ MOVE ;Go back for more
0092 C% RET
3 BF
sBuild file contrel block
;This subroutine formats a OOH-byte terminated string
;s (presumed to be a file name) into an FCB, setting the
3disk and file name and type, and clearing the
svemainder of the FCB to 07s.
Figure 5-47. (Continued)

Chapter 5: The Basic Disk Operating System 107

0093 C9 BF: RET ;Dummy subroutine for this example

3Entry parameters
H DE -> File contral block (3& bytes)
5 HL -> File name string (OOH-byte-terminated)

sExit parameters
H The built file control block

i This subroutine is shown in full in Figure S-1¢&

Figure 5-17.

(Continued)

Function 18: Search for Next Name Match

Example

Purpose

Notes

Function Code: C= 12H
Entry Parameters: None (assumes previous Search First call)
Exit Parameters: A = Directory code

0012 = B$SEARCHN EQU 18 ;Search Next
0005 = BRDOS EQu S sBDOS entry point
0000 OE12 MVI C, B$SEARCHN sFunction code
sNote: No FCB pointer:
1You must precede this call
3 with a call to Search First
0002 CDOS00 CALL BDOS ;A= 0,1,2,3
s (A % 32) + DMA -> directory
; entry
3A = OFFH if file name not
3 found

This function searches down the file directory for the next file name, type, and
extent that match the FCB specified in a previous Search First function call.

Search First and Search Next are the only BDOS functions that must be used
together. As you can see, the Search Next function does not require an FCB
address as an input parameter—all the necessary information will have been left in
the BDOS on the Search First call.

Like Search First, Search Next returns a directory code in the A register; in
this case, if A= 0FFH, it means that there are no more files that match the file
control block. If A is not 0FFH, it will be a value of 0, 1, 2, or 3, indicating the
relative directory entry number.

There are two ways of using the Search First/ Next calls. Consider a simple file
copying program that takes as input an ambiguous file name. You could scan the
file directory, matching all of the possible file names, possibly displaying them on
the console, and storing the names of the files to be copied in a table inside your
program. This would have the advantage of enabling you to present the file names

108 The CP/M Programmer’s Handbook

to the operator before any copying occurred. You could even arrange for the
operator to select which files to copy on a file-by-file basis. One disadvantage
would be that you could not accurately predict how many files might be selected.
On some hard disk systems you might have to accommodate several thousand file
names.

The alternative way of handling the problem would be to match one file name,
copy it, then match the next file name, copy it, and so on. If you gave the operator
the choice of selecting which files to copy, this person would have to wait at the
terminal as each file was being copied, but the program would not need to have
large table areas set aside to hold file names. This solution to the problem is
slightly more complicated, as you can see from the logic in Figure 5-17.

The subroutine in Figure 5-17, Get Next File (GNF), contains all of the
necessary logic to search down a directory for both alternatives described. It does
require that you indicate on entry whether it should search for the first or next file
match, by setting A to zero or some nonzero value respectively.

You can see from Figure 5-17 that whenever the subroutine is called to get the
next file, you must execute a Search First function to re-find the previous file. Only
then can a Search Next be issued.

As with all functions that return a directory code in A, if this value is not
OFFH, it will be the relative directory entry number in the directory record
currently in memory. This directory record will have been read into memory at
whatever address was specified at the last Set DMA Address function call (code
26, | AH). Notwithstanding its odd name, the DM A Address is simply the address
into which any record input from disk will be placed. If the Set DMA Address
function has not been used to change the value, then the CP/M default DMA
address, location 0080H, will be used to hold the directory record.

The actual code for locating the address of the particular directory entry
matched by the Search First/ Next functions is shown in Figure 5-17 near the label
GNFC. The method involves multiplying the directory code by 32 and then adding
this product to the current DMA address.

Function 19: Erase (Delete) File

Example

Function Code: C=13H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
0013 = B$ERASE EQU 19 sErase File
Q005 = BDOS EQU S ;BDOS entry point
FCR: sFile control block
0000 00 FCR$DISK: DB o] ;Search on default disk drive
0001 3F3FACASAEFCB$NAME: DB Z22?LENAME © ;Ambiguous file name
0009 3IFSP30 FCEB$TYP: DB “RPYPY sAmbiguous file type

000C 00 FCBSEXTENT: DB [o] sExtent

Chapter 5: The Basic Disk Operating System 109

Q00D 0000 FCB$RESV: DB 0,0 sReserved for CP/M

000F 00 FCB$RECUSED: DB (o] . tRecords used in this extent
0010 0000000000F CB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB °,0,0,0,0,0,0,0

0020 00 FCB$SEQREC: DE (o] ;Sequential rec. to read/write
0021 0000 FCB$RANREC: Dw (o] sRandom rec. to read/write
0023 00 FCB$RANRECQ: DB (o} sRandom rec. overflow byte (MS)
0024 OEL3 MVI C, B$ERASE sFunction code

0026 110000 LXI n,FCRB sDE -> file control block

0029 CDOS00 CALL BDOS sA = OFFH if file not found

Purpose This function logically deletes from the file directory files that match the FCB
addressed by DE. It does so by replacing the first byte of each relevant directory
entry (remember, a single file can have several entries, one for each extent) by the
value OE5H. This flags the directory entry as being available for use.

Notes Like the previous two functions, Search First and Search Next, this function
can take an ambiguous file name and type as part of the file control block, but
unlike those functions, the logical disk select code cannot be a “?”,

This function returns a directory code in A in the same way as the previous file
operations.

Function 20: Read Sequential

Function Code: C=14H
Entry Parameters: DE = Address of file control block

Exit Parameters:; A = Directory code
Example
0014 = B$READSER EQU 20 sRead Sequential
0005 = BDOS EQU S sBDOS entry point
FCB: sFile control block
0000 00 FCEB$DISK: DB o ;Search on default disk drive.
0001 456494CASAEFCBSNAME: DB FILENAME~ sfile name
0009 545950 FCR$TYP: DB ‘TYP” sFile type
000C Ds 24 ;Set by file open
sRecord will be read into
3 address set by prior SETDMA
; call
0024 CE14 MVI C, B$READSEQ sFunction code
0024 110000 LXI D,FCB 3sDE -> File control block
0029 CDOS00 CALL BDOS 5A = 00 if operation successful
sA = nonzero if no data in
s file
Purpose This function reads the next record (128-byte sector) from the designated file

into memory at the address set by the last Set DM A function call (code 26, 1 AH).
The record read is specified by the FCB’s sequential record field (FCBSSEQREC
in the example listing for the Open File function, code 15). This field is incre-
mented by 1 so that a subsequent call to Read Sequential will get the next record
from the file. If the end of the current extent is reached, then the BDOS will

110 The CP/M Programmer’s Handbook

s GETC
3This subroutine gets the next character fram a
;sequential disk file. It assumes that the file has
;already been opened.
33> Note : this subroutine changes CP/M“s DMA address.
sEntry parameters
H DE ~> file control block
sExit parameters
H A = next character from file
3 (= OFFH on physical end of file)
H Note : 1AH is normal EDF character for
H ASCII Files.
;Calling sequence
; LXI DE,FCB
H CALL GETC
H CPI 1AH
3 Jz EOFCHAR
H CPI OFFH
; JZ ACTUALEQF
0014 = B$READSEG EQL} 20 ;Read sequential
oA = R$SETDMA EQL 26 ;Set DMA address
0005 = BDOS EQU S 3BDOS entry point
0080 = GETCBS EQU 128 sBuffer size
0000 GETCRF: DS GETCRS sDeclare buffer
Q080 00 GETCCC: DB Q ;Char. count (initially
s "empty")
GETC:
0081 3A8000 LDA GETCCC sCheck if buffer is empty
0084 B7 ORA A
0085 CA9900 Jz GETCFR sYes, fill buffer
GETCRE: sRe-entry point after buffer filled
0088 3D DCR A sNo, downdate count
0089 328000 sTA GETCCC sSave downdated count
008C 47 Moy B, A ;Compute offset of next
scharacter
008D 3E7F MVI A, GETCBS-1 ;By subtracting
Q08F %0 sue B ;s (buffer size -~ downdated count)
0090 SF MaV E,A 1Make result into word value
00?1 1400 MVI D,0
Q093 210000 LXI H, GETCBF sHL ~> base of buffer
0098 19 DAD D sHL ~> next character in buffer
Q097 7€ MoV A M sGet next character
0093 C9 RET
GETCFR: $Fill buffer
0099 DS FUSH D ;Save FCB pointer
00%A 110000 Lx1 D, GETCBF $1Set DMA address to buffer
009D OE1A MVI C, B$SETDMA s function code
009F CDOSC0 CALL BLOOS
00AZ D1 POP D ;Recover FCB pointer
00AZ OE14 MVI C, B$READSEQ jRead sequential "recard" (sector)
00AS CDOS00 CALL BDOS
00AR R7 ORA A ;Check if read unsuccessful (A = NIZI)
00A9 C2R4Q0 JINZ GETCX sYes
O0AC 3E&0 MVE A, GETCBS tReset count
O0AE 328000 STA GETCCC
O0R1 C38800 JMP GETCRE sRe—enter subroutine
GETCX: ;Physical end of file
OOR4 3EFF MVI A, OFFH sIndicate such
00B& C9 RET

Figure 5-18. Read next character from sequential disk file

Notes

Chapter 5: The Basic Disk Operating System 114

automatically open the next extent and reset the sequential record field to 0, ready
for the next Read function call.

The file specified in the FCB must have been readied for input by issuing an
Open File (code 15, 0FH) or a Create File (code 22, 16H) BDOS call.

The value 00H is returned in A to indicate a successful Read Sequential
operation, while a nonzero value shows that the Read could not be completed -
because there was no data in the next record, as at the end of file.

Although it is not immediately obvious, you can change the sequential record
number, FCB$SEQREC, and within a given extent, read a record at random. If
you want to access any given record within a file, you must compute which extent
that record would be in and set the extent field in the file control block (FCBSEX-
TENT) before you open the file. Thus, although the function name implies
sequential access, in practice you can use it to perform a simple type of random
access. If you need to do true random access, look ahead to the Random Read
function (code 33), which takes care of opening the correct extent automatically.

Figure 5-18 shows an example of a subroutine that returns the data from a
sequential file byte-by-byte, reading in records from the file as necessary. This
subroutine, GETC, is useful as a low-level “primitive” on which you can build
more sophisticated functions, such as those that read a fixed number of characters
or read characters up to a CARRIAGE RETURN/LINE FEED combination.

When you read data from a CP/M text file, the normal convention is to fill the
last record of the file with 1AH characters (CONTROL-Z). Therefore, two possible
conditions can indicate end-of-file: either encountering a 1AH, or receiving a
return code from the BDOS function (in the A register) of OFFH. However, if the
file that you are reading is not an ASCII text file, then a IAH character has no
special meaning—it is just a normal data byte in the body of the file.

Function 241: Write Sequential

Example

Function Code: C=15H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
0015 = BSWRITESER EQU 21 tWrite Sequential
Q005 = BDOS EQU S sBDOS entry point
FCB: sFile control block

0000 00 FCB$DISK: DB (o] tSearch on default disk drive

0001 46474C454EFCESNAME: DB “FILENAME“ ; file name

0009 S45950 FCB$TYP: DB ‘TYP” ;File type

000C Ds 24 1Set by Open or Create File
sRecord must be in address
s set by prior SETDMA call

0024 OE1S MVI C, BSWRITESER sFunction code

002& 110000 LXI n,FCB sDE -> File control block

0029 CDOS00 CALL BDOS A = OOH if operation

$ successful
$A = nonzero if disk full

112 The CP/M Programmer’s Handbook

Purpose

Notes

This function writes a record from the address specified in the last Set DMA
(code 26, 1 AH) function call to the file defined in the FCB. The sequential record
number in the FCB (FCB$SSEQREC) is updated by 1 so that the next call to Write
Sequential will write to the next record position in the file. If necessary, a new
extent will be opened to receive the new record.

This function is directly analogous to the Read Sequential function, writing
instead of reading. The file specified in the FCB must first be activated by an Open
File (code 15, 0FH) or create File call (code 22, 16H).

A directory code of 00H is returned in A to indicate that the Write was
successful; a nonzero value is returned if the Write could not be completed be-
cause the disk was full.

As with the Read Sequential function (code 20, 14H), you can achieve a simple
form of random writing to the file by manipulating the sequential record number
(FCBSSEQREC). However, you can only overwrite existing records in the file,
and if you want to move to another extent, you must close the file and reopen it
with the FCBSEXTENT field set to the correct value. For true random writing to
the file, look ahead to the Write Random function (code 34, 22H). This takes care
of opening or creating the correct extent of the file automatically.

The only logical error condition that can occur when writing to a file is
insufficient room on the disk to accommodate the next extent of the file. Any
hardware errors detected will be handled by the disk driver built into the BIOS or
BDOS.

Figure 5-19 shows a subroutine, PUTC, to which you can pass data a byteata
time. It assembles this data into a buffer, making a call to Write Sequential
whenever the buffer becomes full. You can see that provision is made in the entry
parameters (by setting register B to a nonzero value) for the subroutine to fill the
remaining unused characters of the buffer with 1 AH characters. You must do this
to denote the end of an ASCII text file.

Function 22: Create (Make) File

Example

Function Code: C= 16H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
0016 = B$CREATE EQU 22 sFile Create
0005 = BDOS EQU S sBDOS entry point
FCB: sFile control block
0000 Q0 FCB$DISK: DB o] ;Search on default disk drive
0001 46494CAS4EFCBSNAME: DB “FILENAME - s file name
0009 S45950 FCR$TYP: DB “TYP” ;File type

000C 00 FCB$EXTENT: DB [o] sExtent

Chapter 5: The Basic Disk Operating System 113

000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
000F 00 FCB$RECUSED: DB (o] sRecords used in this extent
0010 0000000000FCB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCBS$SEQREC: DB 0 ;Sequential rec. to read/write
0021 0000 FCB$RANREC: DW (o] sRandom rec. to read/write
0023 00 FCBSRANRECO: DB o] sRandom rec. overflow byte (MS)
sNote : file to be created
smust not already exist....
0024 OEL& MVI C, B$CREATE sFunction code
0026 110000 LXI D,FCB ' sDE -> file control block
0029 CDOS00 CALL BDOS 3A =0,1,2,3 if operation
5 successful
sA = OFFH if directory full
s PUTC

;This subroutine either puts the next chararacter out
$1to a sequential file, writing out completed "records"
3 (128-byte sectors) or, if requested to, will fill the
sremainder of the current “record" with 1AH’s to
sindicate end of file to CP/M.

sEntry parameters

] DE -> File control block

B = 0, A = next data character to be cutput
B /= 0, fill the current "“record" with 1AH"'s

Exit parameters
none.

Calling sequence
LXI

H D,FCB
H MVE B, O sNot end of file
H LDA CHAR
H CALL PUTC
3 or
H LXI D,FCR
H MVI B,1 ;Indicate end of file
H CALL PUTC
Q015 = B$WRITESER EQU 21 $Write sequential
001A = B$SETIMA EQU 26 sSet DMA address
0005 = BDOZ EGU] sBDOOS entry point
0080 = PUTCBS EQU 128 jBuffer size
0000 PUTCRF: DS PUTCRBS sDeclare buffer
0080 00 PUTCCC: DR (o] jChar. count (initially "empty")
PUTC:
0081 DS PUSH D ;Save FCB address
0082 FS PUSH PSW sSave data character
0083 78 Mav A B sCheck if end of file requested
0084 B7 ORA A
008% C29900 JINZ PUTCEF t1Yes
0088 CDC300 CALL PUTCGA sNa, get address of next free byte
sHL =~> next free byte
$E = Current char. count (as
swell as A)
O08R F1 POP PSk ;Recover data character
008C 77 MoV M, A :Save in buffer
008D 78 MOV AE ;Get current character count
O08E 3C INR A sUpdate character count
008F FESOQ CP1 PUTCES sCheck if buffer full
0091 CAAFO0 Jz PUTCWR 1Yes, write buffer
0094 328000 STA PUTCCC 3No, save updated count
0097 D1 PaP D sDump FCB address for return
0098 C9 RET

Figure 5-19. Write next character to sequential disk file

114 The CP/M Programmer’s Handbook

PUTCEF: sEnd of file
0099 F1i POP PSW ;Dump data character
00%A CDC300 calL PUTCGA iHL ~> next free byte
3A = current character count
PUTCCEs :Copy EOF character
0090 FESO CPI PUTCBS sCheck for end of buffer
009F CAAP00 JZ PUTCWE ;Yes, write out the buffer
00A2 261A MVI M, 1AH ;No, store EOF in buffer
00A4 3C INR A ;Update caount
Q0AS 23 INX H sUpdate buffer pointer
00A& C39D00 JMP PUTCCE sContinue until end of buffer
PUTCWB: sWrite buffer
00A? AF XRA A sReset character count ta O
Q0AA 328000 STA PUTCCC
00AD 110000 LXI D, PUTCBF sDE -> buffer
OOBO OE1A MVi C, B$SETOMA ;Set DMA address ~» buffer
Q0B2 CDOS00 CALL EDOS
OORS D1 FOP D sRecover FCB address
00B& COE1S MVI C, B$WRITESE®R sWrite sequential record
QORZ CDOS00 CALL BDOS
OO0BB B7 ORA A ;Check if errar
QOBC C2C000 JINZ PUTCX sYes if A = NZ
QOBF C9 RET :No, return to caller
FUTCX: sError exit
QOCO ZEFF MVI A, OFFH s Indicate such
oocz C9 RET
PUTCGA: sReturn with HL -> next free char.
sand A = current char. count
00C2 3AR000 LDA PUTCCC ;Get current character count
00Cé SF Mav E.A sMake word value in DE
00C7 1400 MVI 0,0
00CY 210000 LXI H, PUTCBF sHL -> Base of buffer
QoCcC 19 DAD D sHL <> next free character

ooch C9 RET

Figure 5-19.

Purpose

Notes

Write next character to sequential disk file (continued)

This function creates a new file of the specified name and type. You must first
ensure that no file of the same name and type already exists on the same logical
disk, either by trying to open the file (if this succeeds, the file already exists) or by
unconditionally erasing the file.

In addition to creating the file and its associated file directory entry, this
function also effectively opens the file so that it is ready for records to be written
to it.

This function returns a normal directory code if the file creation has completed
successfully or a value of OFFH if there is insufficient disk or directory space.

Under some circumstances, you may want to create a file that is slightly more
“secure” than normal CP/M files. You can do this by using either lowercase letters
or nongraphic ASCII characters such as ASCIH NUL (00H) in the file name or
type. Neither of these classes of characters can be generated from the keyboard; in
the first case, the CCP changes all lowercase characters to uppercase, and in the
second, it rejects names with odd characters in them. Thus, computer operators

Chapter 5: The Basic Disk Operating System 115

cannot erase such a file because there is no way that they can create the same file
name from the CCP.

The converse is also true; the only way that you can erase these files is by using
a program that can set the exact file name into an FCB and then issue an Erase File
function call.

Note that this function cannot accept an ambiguous file name in the FCB.

Figure 5-20 shows a subroutine that creates a file only after it has erased any
existing files of the same name.

Function 23: Rename File

Function Code: C=17H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
Example
0017 = BSRENAME EQU 23 sRename file
0005 = BDOS EQU S sBDOS entry point
FCB: sFile control block
0000 00 DB (o] ;Search on default disk drive
0001 4FA4CA444E41 DB “OLDNAME “ ;File name
Q009 B54%950 DB “TYP* ;File type
000C 00000000 DB 0,0,0,0
sCF
sCreate file
3This subroutine creates a file. It erases any
sPrevious file before creating the new one,
sEntry parameters
H DE —> File control block for new file
sExit parameters
4 Carry clear if operation successful
; tA = 0,1,2,3)
H Carry set if error (A = OFFH)
;Calling sequence
H LxI D,FCB
§ CALL CF
H JC ERROR
0012 = B$ERASE EQU i9 sErase file
0016 = BSCREATE EQU 22 sCreate file
0005 = BDOS EQU] s BDOS entry point
CF:
0000 DS PUSH D sPreserve FCB pointer
0001 OE13 MVI C, BSERASE ;Erase any existing file
0003 CDOSO00 CALL BLDO3
0004 D1 POP D 3Recover FCB pointer
0007 0OE1é MVI C, BSCREATE ;Create (and open new file)
0009 CDOSQ0 CALL BOOS
000C FEFF cPl OFFH sCarry set if OK, clear if ervor
000E 3F cMC sComplete to use Carry set if Error
000F C9 RET

Figure 5-20.

Create file request

446 The CP/M Programmer’s Handbook

Purpose

Notes

0010 00 DB (o] tFCB + 16

0011 4EA4SS74E41 DB “NEWNAME ~ sFile name

0019 345950 DB “TYP~ t:File type

001C 00000000 DB 0,0,0,0

0020 OEL7 MVI C, BSRENAME ;Function code

0022 110000 LXI D,FCB ;DE -> file control block

0025 CDOS00 CALL BDOS A OOH if operation succesful

tA = OFFH if file not found

This function renames an existing file name and type to a new name and type.
It is unusual in that it uses a single FCB to store both the old file name and type (in
the first 16 bytes) and the new file name and type (in the second 16 bytes).

This function returns a normal directory code if the file rename was completed
successfully or a value of OFFH if the old file name could not be found.

The Rename File function only checks that the old file name and type exist; it
makes no check to ensure that the new name and type combination does not
already exist. Therefore, you should try to open the new file name and type. If you
succeed, do not attempt the rename operation. CP/M will create more than one file
of the same name and type, and you stand to lose the information in both files as
you attempt to sort out the problem.

For security, you can also use lowercase letters and nongraphic characters in
the file name and type, as described under the File Create function (code 22, 16H)
above.

Never use ambiguous file names in a rename operation; it produces strange
effects and may result in files being irreparably damaged. This function will
change all occurrences of the old file name to the new name.

Figure 5-21 shows a subroutine that will accept an existing file name and type
and a new name and type and rename the old to the new. It checks to make sure
that the new file name does not already exist, returning an error code if it does.

Function 24: Get Active Disks (Login Vector)

Example

Purpose

Function Code: C= 18H
Entry Parameters: None
Exit Parameters: HL = Active disk map (login vector)

0018 = B$GETACTDSK EQU 24 ;Get Active Disks
0005 = BDOS EQU 5 }BOOS entry point
sExample of getting active
0000 OE18 MVI C, B$SGETACTDSK 3 disk function code
0002 CDOS00 CALL BDOS JHL = active disk bit map
sBits are = 1 if disk active
;Bits 15 14 13 .., 21 0
iDisk P O N ... CBA
This function returns a bit map, called the login vector, in register pair HL,

indicating which logical disk drives have been selected since the last warm boot or

Chapter 5: The Basic Disk Operating System 447

1RF
tRename file
$This subroutine renames a file.

sIt uses the BF (build FCB) subroutine shown in Figure S.16é

sEntry parameters

*xx No case-folding of file names occurs =
HL -> old file name (00-byte terminated)

DE -> new file name (00-byte terminated)

P—

sExit parameters

' Carry clear if operation successful

1 (A =0,1,2,3)

H Carry set if error

H A = OFEH if new I'le name already exists

§ A = OFFH if old le name does not exist
|

sCalling sequence
’ LX1 + OLDNAME sHL -> old name
' LX1 » NEWNAME sDE -> new naqg
’ CALL RF iF
H JC ERROR
000F = BSOPEN EQu 15 sOpen file
0017 = B$RENAME EQU 23 sRename file
0005 = BDOS EQU 5 3BDOS entry point
0000 0000000000RFFCB: DW 9,0,0,0,0,0,0,0 31 1/2 FCB’s long
0010 0000000000 DW ¢,0,0,0,0,0,0,0
0020 0000000000 DW 0,0,0,0,0,0,0,0
0030 000000 bW 0,0,0
RF:
0034 DS PUSH D ;Save new name pointer
0037 110000 LXI D, RFFCB $Build eld name FCE
tHL already -> old name
003A CDSDOO cALL BF
0030 El POP H 3;Recover new name pointer
003E 111000 LXI D, RFFCB+16 $Build new name in second part of file
0041 CDSDOO CALL BF scontrol black
0044 111000 LXI D,RFFCB+16 tExperimentally try
0047 QEOF MVI C, B$OPEN stq. open he new file
0049 CDOS00. CALL BDOS sto ensuré it does
004C FEFF CPI OFFH snot already exist
O004E 3EFE MVI A, OFEH tAssume erfor (flags unchanged)
0050 D8 RC 3Carry set if A was 0,1,2,3
0051 110000 LXI D, RFFCR sRename the file
0054 OE17 MVI C, BSRENAME
0056 CDOS00 CALL BDOS
0059 FEFF CP1 OFFH sCarry set if OK, clear if error
00SB 3F CMC sInvert to use carry, set if error
005C C9 RET
s BF
$Build file control block
tThis subroutine formats a OOH-byte terminated string
t{presumed to be a file name) into an FCB, setting the
sdisk and the file name and type, and clearing the
sremainder of the FCB to 0’s.
sEntry parameters
H DE ~> file contrel block (36 bytes)
¥ HL -> file name string (OOH-byte terminated)
Exit parameters
y The built file control block.
3Calling sequence
H LXI D,FCB
H LXI H, FILENAME
§ C’LL BF
BF:
005D C? RET ;Dummy subroutine : see Figure S5.16.

Figure 5-24. Rename file requést

448 The CP/M Programmer’s Handbook

Notes

Function 25:

Example

Purpose

Notes

Function 26:

Example

Reset Disk function (code 13, 0DH). The least significant bit of L corresponds to
disk A, while the highest order bit in H maps disk P. The bit corresponding to the
specific logical disk is set to 1 if the disk has been selected or to 0 if the disk is not
currently on-line.

Logical disks can be selected programmatically through any file operation
that sets the drive field to a nonzero value, through the Select Disk function (code
14, 0EH), or by the operator entering an “X:” command where “X” is equal to A,
B,..P

This function is intended for programs that need to know which logical disks
are currently active in the system—that is, those logical disks which have been
selected.

Get Current Default Disk

Function Code: C = 19H
Entry Parameters: None
Exit Parameters: A = Current disk

(0=A,1=B, .., F=P)
0019 = B$GETCURDSK EQU 25 ;Get Current Disk
0005 = BDOS £Qu S sBDOS entry point
0000 OE19 MVI C, B$GETCURDSK sFunction code
0002 CDOS00 CALL BDOS ;A = 0 if A:, t if B: .

This function returns the current default disk set by the last Select Disk
function call (code 14, 0EH) or by the operator entering the “X:” command (where
“X”is A, B, ..., P) to the CCP.

This function returns the current default disk in coded form. Register A= 0 if
drive A is the current drive, | if drive B, and so on. If you need to convert this to the
corresponding ASCII character, simply add 41H to register A.

Use this function when you convert a file name and type in an FCB to an
ASCII string in order to display it. If the first byte of the FCB is 00H, the current
default drive is to be used. You must therefore use this function to determine the
logical disk letter for the default drive.

Set DMA (Read/Write) Address

Function Code: C=1AH
Entry Parameters: DE = DMA (read/write) address _

Exit Parameters: None
001A = B$SETDMA EQU 26 :Set DMA Address
0005 = BDOS EQU 5 +BDOS entry point

Purpose

Notes

Chapter 5: The Basic Disk Operating System 449

0000 SECBUFF 3 Ds 128 sSector buffer
0080 OE1A MVI C, B$SETDMA sFunction code
0082 110000 LXI D, SECBUFF sPointer to buffer
0085 CDOSQ0 CALL BDOS

This function sets the BDOS’s direct memory access (DM A) address to a new
value. The name is an historic relic dating back to the Intel Development System
on which CP/M was originally developed. This machine, by virtue of its hardware,
could read data from a diskette directly into memory or write data to a diskette
directly from memory. The name DM A address now applies to the address of the
buffer to and from which data is transferred whenever a diskette Read, Write, or
directory operation is performed.

Whenever CP/M first starts up (cold boot) or a warm boot or Reset Disk
operation occurs, the DMA address is reset to its default value of 0080H.

No function call can tell you the current value of the DM A address. All youcan
do is make a Set DMA function call to ensure that it is where you want it.

Once you have set the DM A address to the correct place for your program, it
will remain set there until another Set DMA call, Reset Disk, or warm boot
occurs.

The Read and Write Sequential and Random operations use the current
setting of the DMA address, as do the directory operations Search First and
Search Next.

Function 27: Get Allocation Vector

Example

Purpose

Notes

Function Code: C=1BH
Entry Parameters: None
Exit Parameters: HL = Address of allocation vector

001B = BSGETALVEC EQU 27 ;Get Allocation Vector Address
0005 = BDOS EQU 5 +BDOS entry point
0000 OE1B MVI C, B$GETALVEC tFunction code
0002 CDOS00 CALL RDOS tHL -> Base address of
H allocation vector
This function returns the base, or starting, address of the allocation vector for

the currently selected logical disk. This information, indicating which parts of the
disk are assigned, is used by utility programs and the BDOS itself to determine
how much unused space is on the logical disk, to locate an unused allocation block
in order to extend a file, or to relinquish an allocation block when a file is deleted.

Digital Research considers the actual layout of the allocation vector to be
proprietary information.

120 The CP/M Programmer’s Handbook

Function 28: Set Logical Disk to Read-Only Status

Example

Purpose

Notes

Function Code: C= ICH
Entry Parameters: None
Exit Parameters: None

001C = B$SETDSKRO EQu 28 1Set disk to Read Only
3 function code

0005 = BDOS EQU s :BDOS entry moint
1Sets disk selected by prior
1Select disk function call

0000 OE1C MvI C.B$SETDSKRO :Function code

0002 CDOS00 CALL BDOS

This function logically sets the currently selected disk to a Read-Only state.

Any attempts to execute a Write Sequential or Write Random function to the
selected disk will be intercepted by the BDOS, and the following message will
appear on the console:

BDOS Err on X1 R/0

where X: is the selected disk.

Once you have requested Read-Only status for the currently selected logical
disk, this status will persist even if you proceed to select other logical disks. In fact,
it will remain in force until the next warm boot or Reset Disk System function call.

Digital Research documentation refers to this function code as Disk Write
Protect. The Read-Only description is used here because it corresponds to the
error message produced if your program attempts to write on the disk.

Function 29: Get Read-Only Disks

Example

Purpose

Function Code: C= |DH
Entry Parameters: None
Exit Parameters: HL = Read-Only disk map

001D = BSCETRODSKS EQU 29 1Get Read Only disks

0005 = BDOS EQU s 1BDOS entry point

0000 OE19 M1 C,BS$GETRODSKS jFunction code

0002 CDOS00 CALL BDOS JHL = Read Only disk bit map
sBits are = | if disk Read Only
3Bits 15 14 13 ... 21 0
jDisk P O N...CBaA

This function returns a bit map in registers H and L showing which logical

disks in the system have been set to Read-Only status, either by the Set Logical

Chapter 5: The Basic Disk Operating System 121

Disk to Read-Only function call (code 28, 1CH), or by the BDOS itself, because it
detected that a diskette had been changed.

The least significant bit of L corresponds to logical disk A, while the most
significant bit of H corresponds to disk P. The bit corresponding to the specific
logical disk is set to 1 if the disk has been set to Read-Only status.

Function 30: Set File Attributes

Example

Purpose

Function Code: C=1EH
Entry Parameters: DE = Address of FCB

Exit Parameters: A = Directory code
O01E = BSSETFAT EQU 30 3Set File Attribute
000] = BOOS EQU S 3BDOS entry point
FCB: sFile control block
0000 00 FCB$DISK: DB o sSearch on default disk drive
0001 A46494CASAEFCBSNAME: DB ’FILENAME~ sFile name
0009 DA FCB$TYP: DB ‘T +80H s Type with R/0
3 attribute
000A 35950 DB YR
000C 0000000000 j17] 0,0,0,0,0,0,0,0,0,0,0
0022 OEILE MVI C,BS$SETFAT sFunction code
0024 110000 LXI D,FCB 3DE -> file control block
$MS bits set in file name/type
0027 CDOS00 CALL BDOS tA = OFFH if file not found

This function sets the bits that describe attributes of a file in the relevant
directory entries for the specified file. Each file can be assigned up to 11 file
attributes. Of these 11, two have predefined meanings, four others are available for
you to use, and the remaining five are reserved for future use by CP/M.

Each attribute consists of a single bit. The most significant bit of each byte of
the file name and type is used to store the attributes. The file attributes are known
by a code consisting of the letter “f” (for file name) or “t” (for file type), followed by
the number of the character position and a single quotation mark. For example,
the Read-Only attribute is t1”.

The significance of the attributes is as follows:

« fl’ to f4’ Available for you to use
- {5’ to f8 Reserved for future CP/M use

- tl” Read-Only File attribute
S ¥4 System File attribute
<ty Reserved for future CP/M use

Attributes are set by presenting this function with an FCB in which the
unambiguous file name has been preset with the most significant bits set appro-
priately. This function then searches the directory for a match and changes the
matched entries to contain the attributes which have been set in the FCB.

122 The CP/M Programmer’s Handbook

The BDOS will intercept any attempt to write on a file that has the Read-Only
attribute set. The DIR command in the CCP does not display any file with System
status.

Notes You can use the four attributes available to you to set up a file security system,
or perhaps to flag certain files that must be backed up to other disks. The Search
First and Search Next functions allow you to view the complete file directory
entry, so your programs can test the attributes easily.

The example subroutines in Figures 5-22 and 5-23 show how to set file
attributes (SFA) and get file attributes (GFA), respectively. They both use a bit
map in which the most significant 11 bits of the HL register pair are used to
indicate the corresponding high bits of the 11 characters of the file name/type
combination. You will also see some equates that have been declared to make it
easier to manipulate the attributes in this bit map.

sSFA

;5et file attributes

3This subroutine takes a compressed bit map of all the

;file attribute bits, expands them into an existing

;file cantrol block and then requests CR/M ta set

sthe attributes in the file directory.

sEntry parameters

H DE ~> file control block

H HL = bit map. Only the most significant 11

3 bits are used. These correspond directly

' with the possible attribute bytes.

;Exit parameters

H Carry clear if operation successful (A = 0,1,2,3)

: Carry set if error (A = OFFH)

t1Calling sequence

3 LXI 0,FCB

H LXI H, 0000$000041100$0000B :Bit Map

H CALL. SFA

H JC ERROR

;File Attribute Equates

8000 = FASF1 EGQU 1000$0000¢0000$0000R sF1- - Fa~”
4000 = FA$F2 EQU 0100%$0000$0000%$0000R ;Available for use by
2000 = FASF3 EQL 001 0%$0000$0000%0000B ; application programs
1000 = FA%F4 EQU 0001%$0000%$0000$0000B
0800 = FASFS EQU 0000%1000$0000$0000E ;F5- - F8~
0400 = FASF& EQL 0000%$0100$0000$0000E sReserved for CP/M
0200 = FASF7 EGU 0000$0010%$0000%$0000B
0100 = FASF8 EGQU 0000$0001 $0000$0000B
0080 = FA$T1 EQU 0000%0000% 1000300008 3T1” -- read/only file
0080 = FASROQ EQU FAST
0040 = FA$T2 EQU 0000%0000$0100$0000B ;727 —— system files
0040 = FA$SYS ERU FA$T2
Q020 = FAST3 EQU QQ00%$0000$0010$0000B : T3 —— reserved for CP/M
QO01E = B$SETFAT EQU 30 3Set file attributes
0005 = BOOS EQU S +BDOS entry point

Figure 5-22.

Set file attributes

Chapter 5: The Basic Disk Operating System

123

0000
0001
0002

0004
0005
0006

0008 OF

0009
000A
000B
000C
000E
Q00F
0010
0011
0012
0013
0016
0018
0019
001C
QO1E
Q01F

oD
C20400
OE1E
D1
CDOS00
FEFF
3F

ce

SFAs

PUSH D ;Save FCUB pointer

INX D sHL ~> 1st character of file name

MVI C,843 sLoop count for file name and type
SFAL: yMain processing loop

XRA A sClear carry and A

DAD H 3Shift next MS bit into carry

ACI (o] 3A = 0 or 1 depending on carry

RRC sRotate LS bit of A into MS bit

MOV B.A 3Save result (OOH or 80H)

XCHG sHL —> FCB character

MoV AcM 3Get FCB character

ANI 7FH sIsolate all but attribute bit

ORA B ;Set attribute with result

Mav M, A sand store back into FCB

XCHG sDE -> FCB, HL = remaining bit map

INX o] sDE -> next character in FCB

DCR c sDowndate character count

JNZ SFAL sLoop back for next character

MvI C,B$SETFAT ;Set file attribute function code

POP o sRecover FCB pointer

CALL BDOS

CPI OFFH sCarry set if OK, clear if error

CMC sInvert to use carry set if error

RET

Figure 5-22.

Set file attributes (continued)

0014
0011
0005
0080

BRHN

8000 =
4000 =

3 GFA

;Get file attributes

3This subroutine finds the appropriate file using a

;search for First Name Match function rather than opening
tthe file. It then builds a bit map of the file attribute
sbits in the file name and type. This bit map is then ANDed
swith the input bit map., and the result is returned in the
szero flag. The actual bit map built is also returned in case
smore complex check is required.

;2> Note: This subroutine changes the CP/M DMA address.

;Entry parameters

DE -> File control block

HL = Bit map mask to be ANDed with attribute
results

Exit parameters
Carry clear, ocperation successful
Nonzero status set to result of AND between
input mask and attribute bits set.
HL = Unmasked attribute bytes set.
Carry set, file could not be found

B$SETDMA Ec) 26 ;Set DMA address
B$SEARCHF EQU 17 sSearch for first entry to match
8DOS EQU S 3BDOS entry point
GFADMA EQU 80H shefault DMA address
sCalling sequence
H LXI D, FCB
§ Lx1 H, 00008000041 100800008 ;Bit map
H CALL GFA
H JC ERROR
tFile attribute equates
FASF1 EQU 1000$0000%00008$0000B $tF1/ - F3”
FASF2 EQU 0100$0000%000080000B sAvailable for use by

Figure 5-23.

Get file attributes

124

The CP/M Programmer’s Handbook

2000 = FASF3 EQU 0010%0000$0000$C000E sApplication programs
1000 = FASF4 EQU 0001$0000$000080000B
0800 = FASFS EQU 0000%1000$0000%$0000B tF6° - F8~
0400 = FASF& EQU 0000%0100$0000%0000R sReserved for CP/M
0200 = FASF7 EQU 000080010%$0000%0000B
0100 = FASF8 EQU 0000$0001$0000%0000B
0080 = FAST1 EQU 0000$0000%1000%0000B $T1’ -- read/only file
0080 = FASRO EQU FAST1
0040 = FAST2 EQU 0000%0000%0100%0000B 3727 —— system files
0040 = FASSYS EQU FAST2
0020 = FAST3 EQU 0000$0000%$0010%0000B 3737 -~ reserved for CP/M
GFA:
0000 ES PUSH H ;Save AND-mask
0001 DS PUSH D ;Save FCB pointer
Q002 OE1A MVI C, BSSETDMA ;Set DMA to default address
0004 118000 LXI D, GFADMA sDE -> DMA address
0007 CDOS00 CALL BDOS
000A D1 POP D sRecover FCB pointer
000B OE11t MvI C,B$SEARCHF sSearch for match with name
000D CDOS00 CALL BUOOS
0010 FEFF cP1 OFFH sCarry set if OK, clear if error
0012 3F cMC sInvert to use set carry if error
0013 DA4100 JC GFAX sReturn if error
tMultiply by 32 to get offset into DMA buffer
0016 87 ADD A P 2
0017 87 ADD A % 4
0018 87 ADD A 3% 8
0019 87 ADD A % 16
001A 87 ADD A % 32
00iB SF MOV E,A sMake into a word value
001C 1400 MvI D,0
O01E 218000 LXI H, GFADMA $HL ~> DMA address
0021 19 DAD <] sHL ~> Directory entry in DMA buffer
0022 23 INX H sHL -> 1st character of file name
0023 EB XCHG tDE -> 1ist character of file name
0024 OEOB MVI C,8+3 ;Count of characters in file name and type
0026 210000 LXI H,0 ;Clear bit map
GFAL: sMain loop
0029 1A LDAX D ;Get next character of file name
002A E&B0 ANI BOH tIsclate attribute bit
002C 07 RLC sMove MS bit into LS bit
002D BS ORA L sOR in any previously set bits
002E &F MoV L,A sSave result
002F 29 DAD H 3Shift HL left one bit for next time
0030 13 INX D sDE -> next character in file name, type
0031 0D DCR c sDowndate count
0032 C22900 JNZ GFAL sGo back for next character
0035 29 DAD H ;Left justify attribute bits in HL
0038 29 DAD H sMS attribute bit will already be in
0037 29 DAD H sbit 11 of HL, so only 4 shifts are
0038 29 DAD H jnecessary
003% o1 POP] s Recover AND-mask
003A 7A MoV A, D 3Get MS byte of mask
Q03B A4 ANA H 3AND with MS byte of result
003C 47 Mav B,A ;Save interim result
003D 7B MOV AE ;Get LS byte of mask
Q03E AS ANA L 1AND with LS byte of result
O03F BO ORA B sCombine two results to set Z flag
0040 C? RET
GFAX: ;Error exit
0041 E1 POP H ;Balance stack
0042 C9 RET

Figure 5-23.

Get file attributes (continued)

Chapter 5: The Basic Disk Operating System 125

Function 34: Get Disk Parameter Block Address

Example

Purpose

Notes

Function Code: C=1FH
Entry Parameters: None
Exit Parameters: HL = Address of DPB

QO1F = BSGETDPB EQU 31 sGet Disk Parameter Block
3 Address
0003 = BDOS EQU S +BDOS entry point

sReturns DPB address of
3 logical disk previously
s selected with a Select
3 Disk function.
0000 OELF MVI C, B$GETDPB sFunction code
0002 CDOS00 CALL BDOS tHL -> Base address of current
s disk’s parameter block

This function returns the address of the disk parameter block (DPB) for the
last selected logical disk. The DPB, explained in Chapter 3, describes the physical
characteristics of a specific logical disk—information mainly of interest for system
utility programs.

The subroutines shown in Figure 5-24 deal with two major problems. First,
given a track and sector number, what allocation block will they fall into? Con-
verseley, given an allocation block, what is its starting track and sector?

These subroutines are normally used by system utilities. They first get the DPB
address using this BDOS function. Then they switch to using direct BIOS calls to
perform their other functions, such as selecting disks, tracks, and sectors and
reading and writing the disk.

The first subroutine, GTAS (Get Track and Sector), in Figure 5-24, takes an
allocation block number and converts it to give you the starting track and sector
number. GMTAS (Get Maximum Track and Sector) returns the maximum track
and sector number for the specified disk. GDTAS (Get Directory Track and
Sector) tells you not only the starting track and sector for the file directory, but
also the number of 128-byte sectors in the directory.

Note that whenever a track number is used as an entry or an exit parameter, it is
an absolute track number. That is, the number of reserved tracks on the disk before
the directory has already been added to it.

GNTAS (Get Next Track and Sector) helps you read sectors sequentially. It
adds 1 to the sector number, and when you reach the end of a track, updates the
track number by 1 and resets the sector number to 1.

GAB (Get Allocation Block) is the converse of GTAS (Get Track and Sector).
It returns the allocation block number, given a track and sector.

Finally, Figure 5-24 includes several useful 16-bit subroutines to divide the HL
register pair by DE (DIVHL), to multiply HL by DE (MULHL), to subtract DE
from HL (SUBHL —this can also be used as a 16-bit compare), and to shift HL
right one bit (SHLR). The divide and multiply subroutines are somewhat
primitive, using iterative subtraction and addition, respectively. Nevertheless, they
do perform their role as supporting subroutines.

126

The CP/M Programmer’s Handbook

;Useful subroutines for accessing the data in the
sdisk parameter black

Q00E = B$SELDSK EGLt 14 :Select Disk function code
001F = B$GETDPB Equ 31 ;Get DPB address
0005 = BDOS EGQU = $BDOS entry point
It makes for easier, more compact code to copy the
tspecific disk parameter block into local variables
swhile manipulating the information.
tHere are those variables ~-—
DPE: sDisk parameter block
0000 0000 DPBSPT: DW Q ;128-byte sectars per track
0002 00 DPBBS: DB [¢] sBlock shift
0003 00 DPBEM: DB o] sBlock mask
0004 00 DPBEM: DB (o] sExtent mask
0005 0000 DPBMAB: DW 0 sMaximum allocation block number
0007 0000 DPBNOD: DW o] :Number of directory entries - 1
0009 0000 DPBDAR: DW 0 sDirectory allocation blocks
COOB 0000 DPBCBS: DW [\] 1Check buffer size
000D 0000 DFBTBD: DW [d] i Tracks before directory (reserved tracks)
000F = DPRSZ EQU $~-DPB +Disk parameter block size
s GETDPE
1Gets disk parameter block
sThis subroutine copies the DPB for the specified
tlogical disk into the local DPR variables above.
sEntry parameters
H A = Logical disk number (A: = 0, B: = {...)
$sExit parameters
s Local variables contain DPE
GETLDPB:
000F SF Moy E,A sGet disk code for select disk
0010 OEOQE MVI C, B$SELDSK sSelect the disk
0012 CDOS00 CALL BDO3
0015 QEILF MVI C, B$GETDPR sGet the disk parameter base address
0017 CDOS00 CALL BDOS JHL -> DPB
00tA OEQOF MVI G, DPBSZ ;Set count
001C 110000 LX1 D, DPB ;Get base address aof local variables
GDPBL: sCopy DPB into local variables
001F 7E MOV A M ;Get byte from DFB
0020 12 STAX n ;Store into local variable
Q021 13 INX 1] sUpdate local variable pointer
0022 23 INX H tUpdate DPB pointer
0023 0D DCR C sDowndate count
0024 C21F00 JNZ GDPBL sLoop back for next byte
0027 C9 RET

s GTAS
;Get track and sector (given allocation block number)

3;This subroutine converts an allocation block into a
strack and sector number -- note that this is based on
5128-byte sectors.

$>>>>> Note: You must call GETDPB before
(R you call this subroutine

;Entry parameters
H HL = allocation block number

Exit parameters
HL = track number
DE = sector number

tMethod :

3In mathematical terms, the track can be derived from:

sTrk = (tallocation block ¥ sec. per all. block) / sec. per trk)
H + tracks before directory

Figure 5-24. Accessing disk parameter block data

Chapter 5: The Basic Disk Operating System 127

1 The sector is derived from:
3Sec = ((allecation block % sec. per all. bleck) modulo/

H sec. per trk) + 1
GTAS:

0028 3A0200 L.DA DFPBBS 3Get block shift —— this will be 3 to
37 depending on allocation block size
+It will be used as a count for shifting

GTASS:

002B 29 DAD H ;Shift allocation block left one place

002C 3D DCR A sDecrement block shift count

0020 C22BOO JNZ GTASS 3More shifts required

0030 EB XCHG sDE = all. block # sec. per block
;i.e. DE = total number of sectors

0031 2A0000 LHLD DPBSPT ;Get sectors per track

0034 EB XCHG sHL = sec. per trk, DE = tot. no. of sac.

0035 CD8FO0 CALL DIVHL sBC = HL/DE, HL = remainder
sBC = track, HL = sector

0038 23 INX H sSector numbering starts from 1

0039 EB XCHG $DE = sector, HL = track

003A 2A0D00 LHLD DPBTBD sTracks before directory

003D 09 DAD B sDE = sector, HL = absclute track

003E C% RET

;s GMTAS

sGet maximum track and sector

$This is just a call to GTAS with the maximum

jallocation block as the input parameter

32>>>> Note: You must call GETDPB before

323> you call this subroutine

sEntry parameters: none

sExit parameters:

H HL = maximum track number

H DE = maximum sector

GMTAS:
O03F 2A0500 LHLD DPBMAE 3Get maximum allocation block
0042 C32800 JMP GTAS ;Return from GTAS with parameters in HL and DE

s GDTAS

;Get directory track and sector

3This returns the START track and sector for the

3file directory, along with the number of sectors

sin the directory.

323>>> Note: You must call GETDPB before

32> you call this subroutine

tEntry parameters: none

sExit parameters:

i BC = number of sectors in directory

H DE = directory start sector

H HL = directory start track

GOTAS:

0045 2A0700 LHLD DPBNOD :Get number of directory entries - 1

0048 23 INX H ;Make true number of entries
sEach entry is 32 bytes long, so to
sconvert to 128 byte sectors, divide by 4

0049 CDDOOO CALL SHLR 3/ 2 (by shifting HL right one bit)

004C CDDOOO CALL SHLR 3/ 4

004F ES PUSH H sSave number of sectors

0050 210000 LX1 H,0 sDirectory starts in allocation block O

0053 CD2800 CALL GTAS jHL = track, DE = sector

0036 C1 POFP B ;Recover number of sectors

0057 C9 RET

Figure 5-24. (Continued)

128 The CP/M Programmer’s Handbook

;GNTAS
;Get NEXT track and sector

:This subroutine updates the input track and sector
;by one, incrementing the track and resetting the
ssector number as vequired.

3>>>>> Note: You must call GETDPE befare
[P0 you call this subroutine

Note: you must check for end of disk by comparing
the track number returned by this subroutine
to that returned by by GMTAS + 1. When
equality occurs, the end of disk has been reached.

Entry parameters
HL = current track number
DE = current sector number

Exit parameters
HL = updated track number
DE = updated sector number

GNTAS:
0058 ES PUSH H sSave track
0059 13 INX D ;Update sector
005A 240000 LHLD DPBSPT ;Get sectors per track
005D COCP00 CALL SURHL sHL = HL - DE
0050 E1 POP H sRecover current track
00é1 DO RNC sReturn if updated sector <= sec. per trk.
0062 23 INX H sUpdate track if upd. sec > sec. per trk.
0063 110100 LX1 D, 1 sReset sector to 1
0086 C9 RET
; GAB
;Get allocation block
5This subroutine returns an allocation block number
sgiven a specific track and sector. It also returns
sthe offset down the allocation block at which the
ssector will be found. This offset is in units of
3128-byte sectors.
(R4 Note: You must call GETDPBR before
[Rod 24 you call this subroutine
tEntry parameters
H HL = track number
H DE = sector number
sExit parameters
H HL = allocation block number
;Method
;The allocation block is formed from:
sAB = (sector + ({track - tracks before directary)
H % gectors per track)) / log2 (sectors per all. bleck)
1 The sector offset within allocation block is formed from:
;0ffset = (sector + ((track - tracks before directory)
H * sectors per track)) / AND (sectors per all. block - 1)
GAB:
0067 DS PUSH n ;Save sector
Q0&8 EB XCHG sDE = track
0049 2A0DQ0C LHLD DFBTBRD sGet no. of tracks before directory
Q06C EB XCHG sDE = no. of tracks before dir. HL = track
00&D CDCY00 CALL SUBHL sHL = HL - DE
sHL = relative track within logical disk
0070 EB XCHG ;DE = relative track
0071 2A0000 LHLD DPRSPT ;Cet sectors per track
0074 CDA4OO cALL MULHL sHL = HL = DE
sHL = number of sectors
0077 EB XCHG sDE = number of sectors
Figure 5-24. (Continued)

Chapter 5: The Basic Disk Operating System 129

0078 E1 POP H sRecover sector
0079 2B DCX H sMake relative to O
007A 19 DAD o $HL = relative sector
007B 3AQ300 LDA DPEBM ;Get block mask
007E 47 MOV B.A sReady for AND operaticon
Q07F 7D MOV Al ;Get LS byte of relative sector
0080 AO ANA B 3AND with block mask
0081 F5 PUSH PSW A = sector displacement
0082 3A0200 LDA DPBRS sGet block shift
00835 4F Mov C,A sMake into counter
GABS: sShift loop
0086 CDDOOO CALL SHLR sHL shifted right (divided by 2)
0089 OD DCR [3Count down
008A C284600 JINZ BABS sShift again if necessary
008D F1 POP PSW tRecover offset
008E C9 RET
sUtility subroutines
;These perform 146-bit arithmetic on the HL register pair.
s DIVHL
t1Divides HL by DE using an iterative subtract.
sIn practice, it uses an iterative ADD of the complemented divisor.
sEntry paramaters
H HL = dividend
4 DE = divisor
sExit parameters
; BC = quotient
i HL = remainder
DIVHL:
008F DS PUSH D 3;Save divisor
sNote ¢ 27s complement is formed by
sinverting all bits and adding 1.
0090 7B Mav AE sComplement divisor (for iterative
0091 2F CMA sADD later on)
0092 SF -Mov E,A
Q093 7A MOV A, D 3Get MS byte
0094 2F CMA sComplement it
0095 357 MoV D, A
0096 13 INX D sMake 27s complement
sNow, subtract negative divisor until
sdividend goes negative, counting the number
sof times the subtract occurs
0097 010000 B, 0 ;Initialize quotient
DIVHLS: ;Subtract loop
00%A 03 INX B 3Add 1 to quotient
00%B 19 DAD D s "Subtract" divisaor
009C DASAOO JdC DIVHLS sDividend not yet negative
sDividend now negative, quotient 1 too large
009F OB DCX B ;Correct quotient
;Compute correct remainder
00A0 EB XCHG :DE = remainder - divisor
00A1 E1 POP H sRecover positive divisor
00A2 19 DAD D sHL = remainder
Q0A3 C9 RET $BC = quotient, HL = remainder
s MULHL
sMultiply HL % DE using iterative ADD.
sEntry parameters
1 HL = multiplicand
3 DE = multiplier
sExit parameters
H HL = product
H DE = multiplier
MULHL:
00A4 C5 PUSH B sSave user register
;Check if either multiplicand
3 or multiplier is Q
Figure §-24. (Continued)

130 The CP/M Programmer’s Handbook

Q0AS 7C MoV AH
00AS BS ORA L
Q0A7 CACA00 JZ MULHLZ
Q0AA 7A Mov A, D
O0AR B3 ORA E
QOAC CAC3Q0 Wz MULHLZ
OOAF 7A MoV A D
00BCG RC CMP H
00B1 DABTOQ JC MULHLN
O0B4 EB XCHG
MULHLN:
QORS 42 MQay B,D
O0Bé& 4B MoV C,.E
00B7 54 MOV b, H
00B8 SD MOV E,L
00BY OB oex B
MULHLA:
QOBA 78 MOV AB
OORB B1 ORA c
QOBC CAC700 JZ MULHL X
QOBF 19 DAD oD
Q0CO OB Dex B
QQC1 C3BAOO JIMP MULHLA
MULHLZ:
00C4 210000 LX1 H, 0
MULHLX:
00C7 C1 POP B
oocg C9 RET
3 SUBHL

sSubtract HL - DE

sEntry parameters
HL = subtrahend
DE = subtractor

Exit parameters
L = difference

SLBHL 3
00Ccy 7D MOV AL
0OCA 93 SUB E
O0CR &F MoV LA
QQCcc 7C Moy A H
ooCD 9A SBB o
QOCE &7 MOV H, A
QQCF €9 RET

}SHLR

sEntry parameters

iYes, fake product

sYes, fake praduct

sThis routine will be faster if
3 the smaller value is in LDE
3Get MS byte of current DE value
;Check which is smaller

;C set if D < H, so no exchange

sBC = multiplier
;DE = HL = multiplicand

1Adjust count as
;1 % multiplicand = multiplicand

s ADD loop
;Check if all iterations completed

sYes, exit

sHL = multiplicand + multiplicand
jCountdown on multiplier - 1
sLoop back until all ADDs done

tFake product as either multiplicand
3 or multiplier is O

sRecover user register

sGet LS byte
;Subtract without regard to carry
sPut back inta difference

‘;Get MS byte

sSubtract including carry
;Move back into difference

;Shift HL right one place (dividing HL by 2)

sClear carry

;Get MT byte

3Bit 7 set from previous carry,
s bit 0 goes into carry

sPut shift MS byte back

;Get LS byte

sBit 7 = bit 0 of MS byte

sPut back into result

4 HL = value to be shifted
sExit parameters
B HL = value/2
SHLR:
00DO B7 QORA A
oopt 7C Mav A H
oopz2 1F RAR
0oD3 &7 MoV H. A
00D4 7D MoV AL
00DS 1F RAR
00Ds &F Mav L.A
00D7 C9 RET

Figure 5-24. (Continued)

Function 32:

Example

Purpose

Notes

Function 33:

Example

Chapter 5: The Basic Disk Operating System 131

Set/Get User Number

Function Code: C = 20H
Entry Parameters: E = OFFH to get user number, or
E = 0 to 15 to set user number
Exit Parameters: A = Current user number if E was OFFH

0020 = B$SETGETUN EQU 32 ;Set/Get User Number
0005 = BDOS EQU 5 s BDOS entry point
sTo set user nuwbevr
0000 OE20 MVI C,BS$SETGETUN sFunction code
0002 1EOF MVI E, 15 sRequired user number
0004 CDOSO0 CALL BDOS s To get user number
0007 OE20 MVI C, BSSETGETUN sFunction code
0009 1EFF MVI E, OFFH yIndicate request to GET
Q00B CDOS00 CALL BDOS 3A = Current user no. (0 -- 193)

This subroutine either sets or gets the current user number. The current user
number determines which file directory entries are matched during all disk file
operations.

When you call this function, the contents of the E register specify what action is
to be taken. If E= 0FFH, then the function will return the current user number in
the A register. If you set E to a number in the range 0 to 15 (that is, a valid user
number), the function will set the current user number to this value.

You can use this function to share files with other users. You can locate a file by
attempting to open a file and switching through all of the user numbers. Or you can
share a file in another user number by setting to that number, operating on the file,
and then reverting back to the original usef number.

If you do change the current user number, make provisions in your program to
return to the original number before your program terminates. It is disconcerting
for computer operators to find that they are in a different user number after a
program. Files can easily be damaged or accidentally erased this way.

Read Random

Function Code: C=21H
Entry Parameters: DE = Address of FCB

Exit Parameters: A = Return code
0021 = B$READRAN EQU 33 ;Read Random
0005 = BDOS EQU K] ;BDOS entry point
FCB: sFile control block
0000 00 FCR$DISK: DB (o] sSearch on default disk drive
0001 456494CASAEFCBSNAME: DB “FILENAME ~ sFile name

0009 545950 FCB$TYP: DB “TYP” iFile type

132 The CP/M Programmer’s Handbook

00QC 00 FCBSEXTENT: DB] sExtent
000D 0000 FCBSRESV: DB 0,0 sReserved for CP/M
000F 00 FCB$RECUSED: DB o] sRecords used in this extent
0010 0000000000FCES$SARUSED: DB 0,0,0,0,0,0,0,0 sAllocation blocks used
0018 0000000000 DR ©,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB 0] sSequential rec. to read/write
0021 0000 FCR$RANREC: DW (o} sRandom rec. to read/write
0023 00 FCB$RANRECO: DB 4] sRandom rec. overflow byte (MS)
0024 D204 RANRECNO: oW 1234 sExample random record number
sRecord will be read into
s address set by prior
3 SETDMA call
0028 2A2400 LHLD RANRECNQ 3Get random record number
0029 222100 SHLLD FCB$RANREC :Set up file control block
002C OE21 MVI C, BSREADRAN sFunction code
Q02E 110000 LXI D,FCB sDE -> file control block
Q031 CDOS00 CALL BDOS 3A = 00 if operation successful
sA = ponzero if no data in
3 file specifically:
sA = 0f -—— attempt to read
H unwritten record
H 03 —— CP/M could not
H close current extent
3 04 —- attempt to read
3 unwritten extent
d 0é -~ attempt to read
: beyond end of disk
Purpose This function reads a specific CP/M record (128 bytes) from a random file—

that is, a file in which records can be accessed directly. It assumes that you have
already opened the file, set the DM A address using the BDOS Set DMA function,
and set the specific record to be read into the random record number in the FCB.
This function computes the extent of the specified record number and attempts to
open it and read the correct CP/M record into the DMA address.

The random record number in the FCB is three bytes long (at relative bytes 33,
34, and 35). Byte 33 is the least significant byte, 34 is the middle byte, and 35 the
most significant. CP/M uses only the most significant byte (35) for computing the
overall file size (function 35). You must set this byte to 0 when setting up the FCB.
Bytes 33 and 34 are used together for the Read Random, so you can access from
record 0 to 65535 (a maximum file size of 8,388,480 bytes).

This function returns with A set to 0 to indicate that the operation has been
completed successfully, or A set to a nonzero value if an error has occurred. The
error codes are as follows:

A = 01 (attempt to read unwritten record)

A = 03 (CP/M could not close current extent)

A = 04 (attempt to read unwritten extent)

A = 06 (attempt to read beyond end of disk)

Unlike the Read Sequential BDOS function (code 20, 14H), which updates the
current (sequential) record number in the FCB, the Read Random function leaves
the record number unchanged, so that a subsequent Write Random will replace

the record just read.
You can follow a Read Random with a Write Sequential (code 21, 15H). This

Notes

Function 34:

Example

Chapter 5: The Basic Disk Operating System 133

will rewrite the record just read, but will then update the sequential record number.
Or you may choose to use a Read Sequential after the Read Random. In this case,
the same record will be reread and the sequential record number will be incre-
mented. In short, the file can be sequentially read or written once the Read
Random has been used to position to the required place in the file.

To use the Read Random function, you must first open the base extent of the
file, that is, extent 0. Even though there may be no actual data records in this
extent, opening permits the file to be processed correctly.

One problem that is not immediately obvious with random files is that they can
easily be created with gaps in the file. If you were to create the file with record
number 0 and record number 5000, there would be no intervening file extents.
Should you attempt to read or copy the file sequentially, even using CP/M’s file
copy utility, only the first extent (and in this case, record 0) would get copied. A
Read Sequential function would return an “end of file” error after reading record
0. You must therefore be conscious of the type of the file that you try and read.

See Figure 5-26 for an example subroutine that performs Random File Reads
and Writes. It reads or writes records of sizes other than 128 bytes, where necessary
reading or writing several CP/M records, prereading them into its own buffer
when the record being written occupies only part of a CP/M record. It also
contains subroutines to produce a 32-bit product from multiplying HL. by DE
(MLDL—Multiply double length) and a right bit shift for DE, HL (SDLR —Shift
double length right).

Write Random

Function Code: C =22H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Return code

0022 = BSWRITERAN EQU 24 sWrite Random
0005 = BDOS EQU S sBDOS entry point

FCB: sFile control block
0000 00 FCB$DISK: DB (4] sSearch on default disk drive
0001 44494CASAEFCBSNAME: DB “FILENANME sFile name
0009 545950 FCBS$TYP: DB “TYP” sFile type
000C 00 FCBSEXTENT: DB 0o sExtent
000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
QO00F 00 FCB$RECUSED: DB o] sRecords used in this extent
0010 0000000000FCBSABUSED: DB 0,0,0,0,0,0,0,0 sAllocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCR$SEQREC: DB [o] ;Sequential rec. to read/write
0021 0000 FCR$RANREC: DWW o sRandom rec. to read/write
0023 00 FCB$RANRECO: DB (o] sRandom rec. overflow byte (MS)
0024 D204 RANRECNO: bW 1234 sExample random record number

:ﬁecord will be written from
s address set by prior
;3 SETDMA call

134 The CP/M Programmer’s Handbook

Purpose

Notes

0024 2A2400 LHLD RANRECNQ sGet random record number
0029 222100 SHLD FCEB$RANREC ;Set up file control block
002C oE22 MVI C, BSWRITERAN sFunction code

Q02E {10000 LXI D,FCB sDE -> file contreol block

0031 CDOS00 CALL BDOS ;A = 00 if operation successful
3A = nonzero if no data in file
s specifically:
3A = 03 -- CP/M could not
? close current extent
0S5 —— directory full
H 06 —— attempt to write
? beyond end of disk

This function writes a specific CP/M record (128 bytes) into a random file. It is
initiated in much the same way as the companion function, Read Random (code
33,21 H). It assumes that you have already opened the file, set the DM A address to
the address in memory containing the record to be written to disk, and set the
random record number in the FCB to the specified record being written. This
function also computes the extent in which the specified record number lies and
opens the extent (creating it if it does not already exist). The error codes returned in
A by this call are the same as those for Read Random, with the addition of error
code 05, which indicates a full directory.

Like the Read Random (but unlike the Write Sequential), this function does
not update the logical extent and sequential (current) record number in the FCB.
Therefore, any subsequent sequential operation will access the record just written
by the Read Random call, but these functions will update the sequential record
number. The Write Random can therefore be used to position to the required

place in the file, which can then be accessed sequentially.

In order to use the Write Random, you must first open the base extent (extent
0) of the file. Even though there may be no data records in this extent, opening
permits the file to be processed correctly.

As explained in the notes for the Read Random function, you can easily create
arandom file with gaps in it. If you were to create a file with record number 0 and
record number 5000, there would be no intervening file extents.

Figure 5-25 shows an example subroutine that creates a random file (CRF) but
avoids this problem. You specify the number of 128-byte CP/M records in the file.
The subroutine creates the file and then writes zero-filled records throughout. This
makes it easier to process the file and permits standard CP/M utility programs to
copy the file because there is a data record in every logical record position in the
file. It is no longer a “sparse” file.

Figure 5-26 shows a subroutine that ties the Read and Write Random func-
tions together. It performs Random Operations (RO). Unlike the standard BDOS
functions that operate on 128-byte CP/M records, RO can handle arbitrary record
size from one to several thousand bytes. You specify the relative record number of
your record, not the CP/M record number (RO computes this). RO also prereads a
CP/M record when your logical record occupies part of a 128-byte record, either
because your record is less than 128 bytes or because it spans more than one

Chapter 5: The Basic Disk Operating System

435

3 CRF

sCreate random file

3This subroutine creates a random file. It erases any previous
sfile before creating the new one, and then writes O-filled
jrecords throughout the entire file.

;Entry parameters

E -> file control block for new file

HL = Number of 128-byte CP/M records to be
zero-filled.

Exit parameters
Carry clear if operation successful (A = 0,1,2,3)
Carry set if error (A = OFFH)

sCalling sequence
LXI

i 0,FCB
H CALL CRF
H JC ERROR
0013 = B$ERASE EQu 19 iErase file
001é = B$CREATE EQu 22 ;Create file
001A = B$SETDMA EQU 26 3Set DMA address
0015 = BSWRITESER EQU 21 tWrite sequential record
0005 = BDOS EQU S $BDOS entry point
CRFBUF; sZero—filled buffer
0000 0000000000] 0,0,g,0,0,0,0,0.0,0,0,0,0,0,0,0,0.0,0,0,0.0,
0,0,0
0032 0000000000 DwW 0,
0,0,0
00&4 0000000000 oW 0,0,0,0,0,0,0,0,0,0,0,0,0,0
0080 0000 CRFRC: DW o] tRecord count
CRF:
0082 228000 SHLD CRFRC ;Save record count
0085 DS PUSH D sPreserve FCB pointer
0088 OEL3 MVI C, BSERASE sErase any existing file
0088 CDOS00 CALL BDOS
Q08B D1 PoOP D sRecaver FCE painter
008C DS PUSH D 3 and resave
008D OE1& MVI C, BSCREATE 7Create (and open new file)
Q08F CDOS00 CALL BDOS
0092 FEFF CP1 OFFH sCarry set if OK, clear if error
0094 3F CMC iComplete to use carry set if errvor
0095 D1 POP D ;Recover FCB address
00%6 D8 RC sReturn if error
0097 DS PUSH ' D sResave FCR pointer
0098 OE1A MVI C, B$SETDMA ;Set DMA address to O-buffer
00%A 110000 LXI D, CRFBUF
009D CDOS00 CALL BDOS
00A0 D1 POP o sRecover FCB pointer
CRFL:
00A1 2AB000 LHLD CRFRC ;Get record count
00A4 7D MoV AL
Q0AS B4 ORA H ;Check if count now zero
00AS C8 RZ tYes, exit
00A7 2B DCX H ;Downdate count
00A8 228000 SHLD CRFRC ;Save count
0OAB DS PUSH D sResave FCB address
OOAC OE1S MVI C,BSWRITESEQ iWrite sequentially
00AE CLOS00 CALL BDOS
00Bt D1 POP o sRecover FCR
00B2 C3A100 JMP CRFL sWrite next record

Figure 5-25. Create random file

436 TheCPM Programmer’s Handbook

128-byte sector. The subroutine suppresses this preread if you happen to use a
record size that is some multiple of 128 bytes. In this case, your records will fit
exactly onto a 128-byte record, so there will never be some partially occupied
128-byte sector. .

This example also contains subroutines to produce a 32-bit product from
multiplying HL by DE (MLDL—Multiply double length) and a right bit shift for
DE, HL (SDLR—Shift double length right).

0021
001A
0021
0028

0003

0000
0001
0003
0005
0007
0009

0009

31RO
sRandom operation (read or write)

sThis subroutine reads or writes a random record from a file.

sThe record length can be other than 128-bytes. This

;subroutine computes the start CP/M record (which

3is 128 bytes), and, if reading, performs a random read

sand moves the user—specified record into a user buffer.

+1f necessary, more CP/M records will be read until the complete
juser~specified record has been input.

iFor writing, if the size of the user-specified record is not an exact
;multiple of CP/M records, the appropriate sectors will be preread.
sIt is not necessary to préread when the user-specified record

1is an exact CP/M record, nor when subroutine is processing

sCP/M records entirely spanned by a user-specified recard.

sEntry parameters
HL -> parameter block of the form:

;

H DB 8} $OFFH when reading, O0H for write
’ bW FCB sPointer to FCB

H DW RECNO sUser record number

H o] RECSZ ;User record size

H oW BUFFER sPointer to buffer of

d

;3 RECSZ bytes in length

Exit parameters
A =0 if operation completed (and user record
copied into user buffer)

H
H
H 1 if attempt to read unwritten CP/M record
H 3 if CP/M could not close an extent
H 4 if attempt to read unwritten extent
H 5 if CP/M could not create a new extent
H 6 if attempt to read beyond end of disk
sCalling sequence
H LXI H, PARAMS 3HL -> parameter block
H CALL RO
3 ORA A sCheck if error
H JNZ ERROR
= FCBESRANREC EQU 33 ;0ffset of random. record no. in FCB
= B$SETOMA EQU 26 s1Set the DMA address
= B$SREADRAN EQu a3 sRead random record
= BSWRITERANZ EQU 40 sWrite random record with zero-fill
; previously unallocated allocation
3 blocks
= BDOS EQU S $BDOS entry point
ROPB: ;sParameter block image
00 ROREAD: DB [e] sNZ when reading, Z when writing
0000 ROFCB: DW o] sPointer to FCB
0000 ROURN: DW (] ;User record number
0000 ROURL: DWW o] tUser record length
0000 ROUB: DW (o] sPointer to user buffer
= ROPBL EQU $-ROPB sParameter block length
0000 ROFRP: DW 1] ;Pointer to start of user record fragment

s in first CP/M-record read in

Figure 5-26.

Read/ Write variable length records randomly

Chapter 5: The Basic Disk Operating System

137

000B 00 ROFRL: DB [s] sFragment length
000C 0000 RORNP: DW L] sRecord number pointer (in user FCB)
000E 00 ROWECR: DB (] $NZ when writing user records that are an
7 exact super-multiple of CP/M-record (and
3 therefore no preread is required)
000F ROBUF: DS 128 sBuffer for CP/M record
RO:
008F 110000 LXI D,ROPB 3DE -> local parameter block
0092 OEO? MVI C, ROPBL sParameter block length
0094 CDFEO1 CALL MOVE sMove C bytes from HL to DE
1To compute offset of user record in CP/M record,
3 compute the relative BYTE offset of the start
y of the user record within the file (i.e.
3 user record number % record size). The least
+ significant 7 bits of this product give the
3 byte offset of the start of the user record.
3The product / 128 (shifted left 7 bits) gives the
1CP/M record number of the start of the user record.
0097 2A0500 LHLD ROURL rGet user record length
Q0%A 7D Mov AL 3Cet LS bytes of user rec. length
QQ9B E&7F ANI 7FH sCheck if exact multiple of 128
009D B7 CRA A ;li.e. exact CP/M records)
O09E 3EQ0 MVl A0 $A = 0, flags unchanged
Q0AO C2A400 JNZ RONE sNot exact CP/M records
00A3 3D DCR A s A =FF
RONE: _
00A4 320E00 STA ROWECR 31 Set write-exact-CP/M-records flag
00A7 EB XCHG $DE = user record length
00A8 2A0300 LHLD ROURN sGet user record number
00AB CDB8O1 CALL MLDL sDE,HL = HL * DE
sDE,HL = user-racord byte offset in file
00AE DS PUSH D 3Save user-~record byte offset
OOAF ES PUSH H
O0BO 7D MOV AL 3Get LS byte of product
00Bl E&7F ANI 7FH s Isclate byte offset within
00B3 4F MoV C.A $CP/M record
00B4 0600 MVI B, 0 sMake into word value
00Bs 210F00 LXI H, ROBUF ;Get base address of local buffer
00BY 09 DAD B tHL -> Start of fragment in buffer
QO0BA 220900 SHLD ROFRP ;1 Save fragment pointer
sCompute maximum fragment length that could reside in
jremainder of CP/M record, based on the offset in the
$CP/M record where the fragment starts.
OOBD 47 MOV B, A s Take copy of offset in CP/M record
OOBE 3ES0 MVI A, 128 :CP/M record size
00CO 90 SUB B sCompute 128 - offset
00Ct 320B0OC STA ROFRL sAssume this is the fragment length
3111 the user record length is less than the assumed
3 fragment length, use it in place of the result above
o0C4 37 MOV B, A ;0et copy of assume frag. length
00CS 3A0&00 LDA ROURL.+1 1Get MS byte of user record length
00C8 B7 ORA A 3 If NZ, rec. len. must be > 128
00Ce® C2D800 JNZ ROFLOK 150 fragment length is OK
00CC 3A0300 LDA ROURL 1Still a chance that rec. len.
OOCF B8 CMP B 1 less than fragment len.
00D0 D2D400 JNC ROFLOK INC if user rec. len. => frag. len,
00D3 320B00 STA ROFRL tlUser rec. len. < frag. len. so
¢ reset fragment length to smaller
ROFLOK:
00Dé 3AOEQ0 LDA ROWECR ;Get exact CP/M record flag
00D% 47 MOV B,A sfor ANDing with READ flag
00DA 3A0000 LDOA ROREAD 3Cet read cperation flag
00DD 2F CMA iInvert so NI when writing
t
Figure 5-26. (Continued)

138 The CP/M Programmer’s Handbook

QORE AQ ANA B sForm logical AND
QODF 320E00 STA ROWECR ;Save back in flag
sRecover the double length byte offset within the file
sof the start of the user record. Shift 7 places right
sto divide by 128 and get the CP/M record number for
jthe start of the user record.
00E2 El POP H sRecover user rec. byte offset
OOE3 Dt POP D
00E4 OEOQ7 MV1 c,7 ;Count for shift right
ROS:
00E& CDF101 CALL SDLR ;DE,HL = DE,HL / 2
0QE® QD DCR [
O0EA C2E&L00 JNZ RQOS
QOED 7A MOV A, D sError if DE still NZ after
OQEE B3 ORA E 3 division by 128.
O0EF C2ACO1 JINZ ROERO
;Set CP/M record number in FCB
00F2 EB XCHG sDE = CP/M record number
Q0F3 2A0100 LHLD ROFCB 3Get pointer to FCB
00F6 012100 LXI B, FCBESRANREC ;0ffset of randoem record no. in FCB
QOF9 0% DAD B sHL -> ran. rec. no. in FCB
00FA 220C00 SHLD RORNP ySave record number pointer
OOFD 73 MoV M. E 3Store LS byte
OOFE 23 INX H
OOFF 72 MOV M. D ;Store MS byte
0100 OE1A MVI C, BSSETDMA 3Set DMA address to local buffer
0102 110F00 LXI D, ROBUF
0105 CDOS00 CALL BDOS
0108 3A0E0Q LDA *ROWECR ;Bypass preread if exact sector write
0108 B7 ORA A
010C C21F01 JNZ ROMNF
010F 240100 LHLD ROFCB sGet pointer to FCB
0112 €B XCHG sDE -> FCB
0113 QE21 MVI C, B$READRAN sRead random function
0115 CDOS00 CALL BDOS
0118 FEOS CPI) sCheck if error code < 5
011A DCAFOL cC ROCIE sYes, check if ignorable error
3 (i.e. error reading unwritten part
y of file for write operation preread)
011D B7 ORA A ;Check if errar
011E CO RNZ :Yes
ROMNF 3 ;Move next fragment
011F 2A0700 LHLD ROUE ;Get pointer to user buffer
0122 EB XCHG sDE -> user buffer
0123 2A0900 LHLD ROFRP sHL -> start of user vec. in local buffer
0126 3A0BOO LoAa ROFRL sGet fragment length
012% 4F MOV C.A sReady for MOVE
0124 3A0000 LDA ROREAD sCheck if reading
012D B7 ORA A
012E C23201 JNZ RORD1 tYes, so leave DE, HL unchanged
0131 EB XCHG tWriting, so swap socurce and destination
sDE -> start of user rec. in local buffer
sHL —-> user buffer
RORD1:
0132 CDFEO1 CALL MOVE sReading - fraament local -> user buffer
sWriting - fragment user -> local buffer
0135 3A0000 LDA ROREAD ;Check if writing
0138 B7 ORA A
0139 CA3DO1 JZ ROWRY sWriting, so leave HL -> user buffer
013C EB XCHG sHL -> next byte in user buffer
ROWR1 =
0130 220700 SHLD ROUB 3} Save updated user buffer pointer
0140 3A0000 LDA ROREAD sCheck if reading
Figure 5-26. (Continued)

Chapter 5: The Basic Disk Operating System

139

0143 B7 ORA A
0144 C25001 JNZ RORD3 1Yes, bypass write code
0147 OE28 MVI C, BSWRITERANZ sWrite random
0149 240100 LHLD ROFCB ;Get address of FCR
014C EB XCHG :DE -> FCB
014D CDOS00 CALL BDOS
RORD3: ;Compute residual length of user record as yet unmoved.
3 If necessary (because more data needs to be transferved)
smore CP/M records will be read. In this case
sthe start of the fragment will be offset 0. The fragment
tlength depends on whether the user record finishes within
;the next sector or spans it. If the residual length of the
juser record is > 128, the fragment length will be set to
3128,
0150 2A0500 LHLD ROURL ;Bet residual user rec. length
0153 3A0BOO LDA ROFRL. ;Get fragment length just moved
0156 SF MoV E.,A $Make into a word value
0157 1400 MVI D,0
0159 CDEAO1L CALL SUBHL sCompute ROURL - ROFRL
o18C 7¢C MOV AH sCheck if result O
015D BS GRA L
O15E C8 RZ sReturn when complete USER
3+ record has been transferred
O15F 220500 SHLD ROURL :1Save downdated residual rec. length
0162 4D MoV C.,L sAssume residual length < 128
0163 118000 LXI D,128 tCheck if residual length is < 128
0166 CDEAO1L CALL SUBHL sHL = HL - DE
0169 FASGEOL JM ROLT128 snegative if < 128
016C QE80 MVl C,128 $=> 128, so set frag.length to 128
ROLY128:
O14E 79 Mov A C
016F 320B00O STA ROFRL jFragment length now is either 128
s if more than 128 bytes left to input
1 in user record, or just the right
3 number of bytes (< 128) to complete
3 the user record.
0172 210F0Q Lx1 H, ROBUF 3All subsequent CP/M records will start
0175 220900 SHLD ROFRP y at beginning of buffer
sUpdate random record number in FCB
0178 2A0CO0 LHLD RORNP sHL -> random record number in wuser FCB
017B SE MOV E/M sIncrement the random record number
017C 23 INX H $tHL -> MS byte of record number
017D S6 MoV o.M sGet MS byte
OL7E 13 INX D sUpdate record number itself
O17F 74 Moy A D 1Check if record now O
0180 B3 ORA E
0181 C287014 JNZ ROSRN tNo, so save record number
0184 3E06 MVI A6 sIndicate "seek past end of disk"
0186 C9 RET sReturn to user
! ROSKN:
0187 72 MoV M, D s Save record number
0188 2B DexX H 3HL -> LS byte
0189 73 MOV M, E
s1f writing, check if preread required
018A 3A0E00 Lba ROWECR sCheck if exact CP/M record write
0180 B7 ORA A
018E C21F01 JNZ ROMNF sYes, go move next fragment
0191 3A0000 LDA ROREAD sIf reading, perform read unconditionally
0194 B7 ORA A
0195 €2A001 JNZ RORD2
0198 3A0BOO LDA ROFRL 3For writes, bypass preread if
0198 FEBO CPI 128 3 whole CP/M-record is to be overwritten
019D CA1FO1 JZ ROMNF y (fragment length = 128)
RORDZ2:
01A0 OE21 MVI C, BSREADRAN sRead the next CP/M record
01A2 2A0100 LHLD ROFCB 3 in seguence
Figure 5-26. (Continued)

440 The CP/M Programmer’s Handbook

O1AS EB XCHG sDE ~> FCB
01A& CpOSO0 CALL BDOS
01A9 C31FO1 JMP ROMNF 16Go back to move next fragment
ROERQ: 3;Error because user record number
; * User record length / 128 gives
;1 a CP/M record number > 65535,
O1AC 3E04 MVI A4 ;Indicate "attempt to read unwritten
O1AE C9 RET ; extent
ROCIE: sCheck ignorable error (preread
;3 for write operation)
O1AF 47 MOV B, A ;Save original error code
01BO 3A0000 LDA ROREAD sCheck if read operation
01B3 B7 ORA A
01B4 78 MOV A,B sRestore original error code but
3 leave flags unchanged
0185 CO RNZ ;Return if reading
01Bé AF XRA A ;Fake "no error" indicator
01B7 c9 RET
sMLDL. i
sMultiply HL % DE using iterative ADD with product
sreturned in DE,HL.
sEntry parameters
' HL = multiplicand
s DE = multiplier
1Exit parameters
H DE,HL = product
l DE = multiplier
MLDL:
0188 010000 LX1 B,0 sPut 0 on top of stack
O1BB €S PUSH B 3 to act as MS byte of product
sCheck if either multiplicand
s or multiplier is O
O1BC 7¢C MOV AH
O1BD BS ORA L
O1BE CAESO01 ir4 MLDLZ sYes, fake product
01Ct 7A MoV A.D
01C2 B3 ORA E
01C3 CAESO1 (74 MLDLZ sYes, fake product
31 This routine will be faster if
s the smaller value is in DE
01iCé 7A MOV A,D ;Get MS byte of current DE value
01C7 BC CMP H ;Check which is smaller
01C8 DACCOL JC MLDLNX ;C set if D < H, so no exchange
01CB EB XCHG
MLDLNX:
OICC 42 MOV B,D 3BC = multiplier
01CD 4B MOV C.E
O1CE 54 MOy D.H sDE = HL = multiplicand
0iCF 5D MOV E.L
0iDO OB ncx B sAdjust count as
; 1 % multiplicand = multiplicand
MLDLA: s ADD loop
01D1 78 MOV A,B sCheck if all iterations completed
01D2 B1 ORA
01D3 CAES80% JZ MLDLX sYes, exit
01D& 19 DAD D sHL = multiplicand + multiplicand
01D7 €3 XTHL sHL = MS bytes of result, TOS = part prod,
o1D8 7D MoV AL sGet LS byte of top half of product
01D® CEQO ACI Q ;Add one if carry set
01DB &F MOV L,A sReplace
01bC 7C Mov AsH ;Repeat for MS byte
01DD CEOO ACI 1]
O1DF 67 Mov H, A
O1EO0 ER XTHL
O1EL OB DCx B sCountdown on multiplier - 1
O1E2 C3D101 JMP MLDLA sLoop back until all ADDs done
Figure 5-26. (Continued)

Chapter 5: The Basic Disk Operating System

141

MLDLZ:
01ES 210000 LXI H, 0 sFake product as either multiplicand
3 or multiplier is O
MLDLX:
01E8 D1 POP D tRecover MS part of product
OtE? C9 RET
3 SUBHL
sSubtract HL - DE.
sEntry parameters
L HL = subtrahend
H DE = subtractor
sExit parameters
3 HL = difference
SUBHL:
O1EA 7D AL 3Get LS byte
O1EB 93 suB E sSubtract without regard to carry
O1EC &F MOV L,A $Put back into difference
O1ED 7€ MOV AH 1Get MS byte
O1EE %A SBB D sSubtract including carry
OLEF 67 MoV H,A sMove back into difference
O1F0 C?% RET
$SOLR)
3Shift DE,HL right one place (dividing DE,HL by 2)
tEntry parameters
H DE,HL. = value to be shifted
$sExit parameters
3 DE,HL "= value / 2
SDLR:
OiFi B7 ORA A ;Clear carry
01F2 EB XCHG :Shift DE first
01F3 CDF701 CALL SDLR2
01F6 EB XCHG sNow shift HL
sDrop into SDLR2 with carry
3 set correctly from LS bit
; of DE
SDLR2: ;Shift HL right one place
01F7 7C MoV A H sGet MS byte
OiF8 IF RAR 3Bit 7 set from previous carry,
“ 3Bit O goes into carry
O1F% 67 MOV H, A sPut shift MS byte back
O1FA 7D MOV AL sGet LS byte
O1FB 1IF RAR sBit 7 = bit 0 of MS byte
O1FC &F Mov L,A sPut back into result
O1FD C9 RET
$MOVE
tMoves C bytes from HL to DE
MOVE:
OIFE 7E Mav AM ;Get source byte
OiFF 12 STAX D 1Store in destination
0200 13 INX B sUpdate destination pointer
0201 23 INX H sUpdate source pointer
0202 oD DCR c sDowndate count
0203 C2FEOL JNZ MOVE sGet next byte
0204 C9 RET
Hgure 5-26. (Continued)

142 The CP/M Programmer’s Handbook

Function 35: Get File Size

Function Code: C=23H
Entry Parameters: DE = Address of FCB
Exit Parameters: Random record field set in FCB

Example
0023 = BSGETFSIZ EQU 35 sGet Random File LOGICAL size
0005 = BDOS EQU S 3BDOS entry point
FCB: sFile control block
0000 GO FCBS$DISK: DB o sSearch on default disk drive
0001 44494CAS4EFCBSNAME: DB “FILENAME - sFile name
0009 545950 FCR$TYP: DB “TYP” sFile type
000C 00 FCBS$EXTENT: DB [v] sExtent
000D 0000 FCBSRESV: DB 0,0 ;Reserved for CP/M
Q00F 00 FCB$RECUSED: DB o] sRecords used in this extent
0010 0000000000FCBSABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB [;Sequential rec. to read/write
0021 0000 FCBSRANREC: DU o] sRandom rec. to read/write
0023 00 FCB$RANRECO: DB 0 sRandom rec. overflow byte (MS)
0024 OE22 MVI C,B$GETFSIZ sFunction code
0026 110000 LX1 D,FCB sDE -> file contrel block
0029 CDOS00 CALL BDQ3S
002C 2A2100 LHLD FCB$RANREC sGet random record number
sHL = LOGICAL file size
s i.e. the record number of the
s last record
Purpose This function returns the virtual size of the specified file. It does so by setting

the random record number (bytes 33-35) in the specified FCB to the maximum
128-byte record number in the file. The virtual file size is calculated from the
record address of the record following the end of the file. Bytes 33 and 34 forma
16-bit value that contains the record number, with overflow indicated in byte 35. If
byte 35 is 01, this means that the file has the maximum record count of 65,536.

If the function cannot find the file specified by the FCB, it returns with the
random record field set to 0.

You can use this function when you want to add data to the end of an existing
file. By calling this function first, the random record bytes will be set to the end of
file. Subsequent Write Random calls will write out records to this preset address.

Notes Do not confuse the virtual file size with the actual file size. In a random file, if
you write just a single CP/M record to record number 1000 and then call this
function, it will return with the random record number field set in the FCB to
1000—even though only a single record exists in the file.

For sequential files, this function returns the number of records in the file. In
this case, the virtual and actual file sizes coincide.

Function 36: Set Random Record Number

Function Code: C=24H
Entry Parameters: DE = Address of FCB
Exit Parameters: Random record field set in FCB

Example

Purpose

Notes

Function 37:

Example

Chapter 5: The Basic Disk Operating System 143

0024 = B$SETRANREC EQU 36 ;Set Random Record Number
0003 = BDOS EQU 35 ;BDOS entry point
FCB: sFile control block
Q000 00 FCB$DISK: DB (o] 3Search on default disk drive
0001 446494CABSAEFCBSNAME: DB “FILENAME ~ 3File name
0009 545950 FCB$TYP: DB “TYP” sFile type
000C 00 FCBSEXTENT: DB o sExtent
000D 0000 FCBS$RESV: DB 0,0 sReserved for CP/M
000F 00 FCB$RECUSED: DB 0 sRecords used in this extent
0010 0000000000FCBSABUSED: DB 0,0,0,0,0,0,0,0 sAllocation blocks used
0018 0000000000 DB 0,0,90,0,0,0,0,0
Q020 00 FCB$SEQREC: DB o] sSequential rec. to read/write
0021 0000 FCB$RANREC: DW (o} jRandom rec. to read/write
0023 00 FCBSRANRECO: DB [«] sRandom rec. overflow byte (MS)
5.0. file opened and read
3 or written sequentially...
0024 OE24 MVI C, B$SETRANREC sFunction code
0024 110000 LXI D,FCB t}DE -> file control block
0029 CDOS00 CALL BDOS
002C 2A2100 LHLD FCB$RANREC ;Get random record number
sHL = random record number
s that corresponds to the
3 sequential progress down
3 the file.
This function sets the random record number in the FCB to the correct value

for the last record read or written sequentially to the file.

This function provides you with a convenient way to build an index file so that
you can randomly access a sequential file. Open the sequential file, and as you read
each record, extract the appropriate key field from the data record. Make the
BDOS Set Random Record request and create a new data record with just the key
field and the random record number. Write the new data record out to the index
fite.

Once you have done this for each record in the file, your index file provides a
convenient method, given a search key value, of finding the appropriate CP/M
record in which the data lies.

You can also use this function as a means of finding out where you are currently
positioned in a sequential file—either to relate a CP/M record number to the
position, or simply as a place-marker to allow a repositioning to the same place
later.

Reset Logical Disk Drive

Function Code: C=125H
Entry Parameters: DE = Logical drive bit map
Exit Parameters: A = 00H

0025
0005

B$RESETD EQU 37 sReset Logical Disks
BDOS EQU S s BDOS entry point

144 The CP/M Programmer’s Handbook

Purpose

Notes

;DE = Bit map of disks to be

s reset

;Bits are = 1 if disk to be

$ reset

;Bits 15 14 13 ... 21 0

sDisk P O N ... CBA
0000 110200 LXI D, 0000$0000$0000$0010B ;Reset drive B:
0003 OE2S MVI C, B$SRESETD sFunction code

0005 CDOS00 CALL BDOS

This function resets individual disk drives. It is a more precise version of the
Reset Disk System function (code 13,0DH), in that you can set specific logical
disks rather than all of them.

The bit map in DE shows which disks are to be reset. The least significant bit of
E represents disk A, and the most significant bit of D, disk P. The bits set to 1
indicate the disks to be reset.

Note that this function returns a zero value in A in order to maintain compati-
bility with MP/ M.

Use this function when only specific diskettes need to be changed. Changing a
diskette without requesting CP/M to log it in will cause the BDOS to assume that
an error has occurred and to set the new diskette to Read-Only status as a
protective measure.

Function 40: Write Random with Zero-fill

Example

Function Code: C=28H
Entry Parameters: DE = Address of FCB

Exit Parameters: A = Return Code
0028 = BSWRITERANZ EQU 40 sWrite Random with Zero-Fill
0005 = BDOS EQU S ;BDOS entry point
FCB: sFile control block
0000 00 FCB$DISK: DR o] sSearch on default disk drive
Q001 45494C4SAEFCBSNAME: DB “FILENAME - sFile name
0009 545950 FCBS$TYP: DB “TYP~ 3File type
000C 00 FCRSEXTENT: DB o sExtent
000D 0000 FCBS$RESV: DR 0,0 ;Reserved for CP/M
000F 00 FCB$SRECUSED: DB o sRecords used in this extent
Q010 000000000QFCBSARUSED: DB 0,0,0,0,0,0,0,0 sAllocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCBS$SEQREC: 1):] 0 ;Sequential rec. to read/write
0021 0000 FCBSRANREC: DW [¢] :Random rec. to read/write
0023 00 FCBS$RANRECO: DB 1] sRandom rec. overflow byte (MS)
0024 D204 RANRECNO: oW 1234 sExample random record number
sRecord will be written from
s address set by prior
;s SETDMA call
0026 2A2400 LHLD RANRECNO sGet random record nNumber
0029 222100 SHLD FCB$RANREC ;Set up file control block
002¢C. 0E28 MVI C, BSWRITERANZ sFunction code
Q02E 110000 LXI D,FCB sDE -> file control block

0031 CDOS00 CALL BROS A = 00 if operation successful

Purpose

Notes

Chapter 5: The Basic Disk Operating System 145

sA = nonzero if no data in file

s specifically

tA = 03 ~~ CP/M could not

1 close current extent

H 05 -~ directory full

' V6 —- attempt to write

H beyond end of disk

This function is an extension to the Write Random function described pre-

viously. In addition to performing the Write Random, it will also fill each new
allocation block with 00H’s. Digital Research added this function to assist Micro-
soft with the production of its COBOL compiler—it makes the logic of the file
handling code easier. It also is an economical way to completely fill a random file
with 00H’s. You need only write one record per allocation block; the BDOS will

clear the rest of the block for you.

Refer to the description of the Write Random function (code 34).

The BIOS Components

The BIOS Entry Points

Bootstrap Functions

Character Input/Output Functions
Disk Functions

Calling the BIOS Functions Directly
Example BIOS

The Basic
Input/Output System

This chapter takes a closer look at the Basic Input/Output System (BIOS). The
BIOS provides the software link between the Console Command Processor
(CCP), the Basic Disk Operating System (BDOS), and the physical hardware of
your computer system. The CCP and BDOS interact with the parts of your
computer system only as logical devices. They can therefore remain unchanged
from one computer system to the next. The BIOS, however, is customized for your
particular type of computer and disk drives. The only predictable part of the BIOS
is the way in which it interfaces to the CCP and BDOS. This must remain the same
no matter what special features are built into the BIOS.

147

148 The CP/M Programmer’s Handbook

The BIOS Components

A standard BIOS consists of low-level subroutines that drive four types of
physical devices:

+ Console: CP/M communicates with the outside world via the console.
Normally this will be a video terminal or a hard-copy terminal.

- “Reader” and “punch”™ These devices are normally used to communicate
between computer systems — the names “reader” and “punch” are just his-
torical relics from the early days of CP/M.

+ List: This is a hard-copy printer, either letter-quality or dot-matrix.

- Disk drives: These can be anything from the industry standard single-sided,
single-density, 8-inch floppy diskette drives to hard disk drives with capaci-
ties of several hundred megabytes.

The BIOS Entry Points

The first few instructions of the BIOS are all jump (JMP) instructions. They
transfer control to the 17 different subroutines in the BIOS. The CCP and the
BDOS, when making a specific request of the BIOS, do so by transferring control
to the appropriate JMP instruction in this BIOS jump table or jump vector. The
BIOS jump vector always starts at the beginning of a 256-byte page, so the address
of the first jump instruction is always of the form xx00H, where “xx” is the page
address. Location 0000H to 0002H has a jump instruction to the second entry of
the BIOS jump vector—so you can always find the page address of the jump
vector by looking in location 0002H.

Figure 6-1 shows the contents of the BIOS jump vector along with the
page-relative address of each jump. The labels used in the jump instructions have
been adopted by convention.

The following sections describe the functions of each of the BIOS’ main
subroutines. You should also refer to Digital Research’s manual CP/M 2.0 Altera-
tion Guide for their description of the BIOS routines.

Bootstrap Functions

There are two bootstrap functions. The cold bootstrap loads the entire CP/M
operating system when the system is either first turned on or reset. The warm
bootstrap reloads the CCP whenever a program branches to location 0000H.

Chapter 6: The Basic Input/Output System 149

xXQ0H JMP BOOT s"Cold" (first time) bootstrap
XXO3H JMR WBOOT s "Warm" bootstrap

%XX0&H JMP CONST sConsole input status

*ROPH JMP CONIN sConsole inpu

xxOCH JMP CONOUT ;Console output

*xOFH JMP LIST sList output

xx12H JMP PUNCH s "Punch" output

xx15H JMP READER s "Reader"” input

xx18H JMP HOME sHome disk heads (to track 0O)
xx1BH JMP SELDSK ;Select logical disk

xx1EH JMP SETTRK 3Set track number

%x21H JMP SETSEC 3Set sector number

xX24H JMP SETDMA ySet YA address

XX27H JHMP READ 'Bead‘ 128-Byte) sector

%% 24H JMP WRITE ; rite (128-byte) sector
xx2DH JMP LISTST sList device output status
®X30H JMP SECTRAN sSector translate

Layout of the standard BIOS jump vector

BOOT: “Cold” Bootstrap

The BOOT jump instruction is the first instruction executed in CP/M. The
bootstrap sequence must transfer control to the BOOT entry point in order to
bring up CP/M. In general, a PROM receives control either when power is first
applied or after you press the RESET button on the computer. This reads in the
CP/M loader on the first sector of the physical disk drive chosen to be logical disk
A. This CP/M loader program reads the binary image of the CCP, BDOS, and
BIOS into memory at some predetermined address. Then it transfers control to the
BOOT entry point in the BIOS jump vectér.

This BOOT routine must initialize all of the required computer hardware. It
sets up the baud rates for the phyéical console (if this has not already been done
during the bootstrap sequence), the “reader,” “punch,” and list devices, and the
disk controller. It must also set up the base page of memory so that there is a jump
at location 0000H to the warm boot entry point in the BIOS jump vector (at
xx03H) and a jump at location 0005H to'the BDOS entry point.

Most BOOT routines sign on by displaying a short message on the console,
indicating the current version of CP/M and the computer hardware that this BIOS
can support.

The BOOT routine terminates by transferring control to the start of the CCP
+ 6 bytes (the CCP has its own small jump vector at the beginning). Just before the
BOOT routine jumps into the CCP, it sets the C register to 0 to indicate that logical
disk A is to be the default disk drive. This is what causes “A>" to be the CCP’s
initial prompt.

The actual CCP entry point is derived from ke base address of the BIOS. The
CCP and BDOS together require 1EOOH bytes of code, so the first instruction of
the CCP starts at BIOS —1EQ0H.

150 The CP/M Programmer’s Handbook

WBOOT: “Warm” Bootstrap

Unlike the “cold”bootstrap entry point, which executes only once, the WBOOT
or warm boot routine will be executed every time a program terminates by
jumping to location 0000H, or whenever you type a CONTROL-C on the console as
the first character of an input line.

The WBOOT routine is responsible for reloading the CCP into memory.
Programs often use all of memory up to the starting point of the BDOS, overwrit-
ing the CCP in the process. The underlying philosophy is that while a program is
executing, the CCP is not needed, so the program can use the memory previously
occupied by the CCP. The CCP occupies 800H (2048) bytes of memory — and this
is frequently just enough to make the difference between a program that cannot
run and one that can.

A few programs that are self-contained and do not require the BDOS’s
facilities will also overwrite the BDOS to get another 1600H (5632) bytes of
memory. Therefore, to be really safe, the WBOOT routine should read in both the
CCP and the BDOS. It also needs to set up the two JMPs at location 0000H (to
WBOOT itself) and at location 0005H (to the BDOS). Location 0003 H should be
set to the initial value of the IOBYTE if this is implemented in the BIOS.

Asiits last act, the WBOOT routine sets register C to indicate which logical disk
is to be selected (C=0for A, 1 for B, and so on). It then transfers control into the
CCP at the first instruction in order to restart the CCP. Again, the actual address
1s computed based on the knowledge that the CCP starts IEOOH bytes lower in
memory than the base address of the BIOS.

Character input/Output Functions

Character input/output functions deal with logical devices: the console,
“reader,” “punch,” and list devices. Because these logical devices can in practice be
connected by software to one of several physical character I/O devices, many
BIOS’s use CP/M’s IOBYTE features to assign logical devices to physical ones.

In this case, each of the BIOS functions must check the appropriate bit fields of
the IOBYTE (see Figure 4-2 and Table 4-1) to transfer control to the correct
physical device driver (program that controls a physical device).

CONST: Console Input Status

CONST simply returns an indicator showing whether there is an incoming
character from the console device. The convention is that A = 0FFH if a character
is waiting to be processed, A= 0 if one is not. Note that the zero flag need not be set
to reflect the contents of the A register —it is the contents that are important.

CONST is called by the CCP whenever the CCP is in the middle of an
operation that can be interrupted by pressing a keyboard character.

Chapter 6: The Basic Input/Output System 151

The BDOS will call CONST if a program makes a Read Console Status
function call (BSCONST, code 11, 0BH). It is also called by the console input BIOS
routine, CONIN (described next).

CONIN: Console Input

CONIN reads the next character from the console to the A registerand sets the
most significant (parity) bit to 0.

Normally, CONIN will call the CONST routine until it detects A = OFFH.
Only then will it input the data character and mask off the parity bit.

CONIN is called by the CCP and by the BDOS when a program executes a
Read Console Byte function (BSCONIN, code 1).

CONOUT: Console Output

CONOUT outputs the character (in ASCII) in register C to the console. The
most significant (parity) bit of the character will always be 0.

CONOUT must first check that the console device is ready to receive more
data, delaying if necessary until it is, and only then sending the character to the
device.

CONOUT is called by the CCP and by the BDOS when a program executes a
Write Console Byte function (BSCONOUT, code 2).

LIST: List Output

LIST is similar to CONOUT except that it sends the character in register C to
the list device. It too checks first that the list device is ready to receive the character.

LIST s called by the CCP in response to the CONTROL-P toggle for printer echo
of console output, and by the BDOS when a program makes a Write Printer Byte
or Display String call (BSLISTOUT and BSPRINTS, codes S and 9).

PUNCH: “Punch” Output

PUNCH sends the character in register C to the “punch”device. As mentioned
earlier, the “punch”is rarely a real paper tape punch. In most BIOS’s, the PUNCH
entry point either returns immediately and is effectively a null routine, or it outputs
the character to a communications device, such as a modem, on your computer.

PUNCH must check that the “punch”device is indeed ready to accept another
character for output, and must wait if it is not.

Digital Research’s documentation states that the character to be output will
always have its most significant bit set to 0. This is not true. The BDOS simply
transfers control over to the PUNCH entry point in the BIOS; the setting of the
most significant bit will be determined by the program making the BDOS function
request (BSPUNOUT, code 4). This is important because the requirement of a zero

152 The CP/M Programmer’s Handbook

would preclude being able to send pure binary data via the BIOS PUNCH
function.

READER: “Reader” Input

As with the PUNCH entry point, the READER entry point rarely connects to
a real paper tape reader.

The READER function must return the next character from the reader device
in the A register, waiting, if need be, until there is a character.

Digital Research’s documentation again says that the most significant bit of
the A register must be 0, but this is not the case if you wish to receive pure binary
information via this function.

READER is called whenever a program makes a Read “Reader” Byte function
request (BSREADIN, code 3).

Disk Functions

All of the disk functions that follow were originally designed to operate on the
128-byte sectors used on single-sided, single-density, 8-inch floppy diskettes that
were standard in the industry at the time. Now that CP/M runs on many different
types of disks, some of the BIOS disk functions seem strange because most of the
new disk drives use sector sizes other than 128 bytes.

To handle larger sector sizes, the BIOS has some additional code that makes
the BDOS respond as if it were still handling 128-byte sectors. This code is referred
to as the blocking/deblocking code. As its name implies, it blocks together several
128-byte “sectors”and only writes to the disk when a complete physical sector has
been assembled. When reading, it reads in a physical sector and then deblocks it,
handing back several 128-byte “sectors” to the BDOS.

To do all of this, the blocking/deblocking code uses a special buffer area of the
same size as the physical sectors on the disk. This is known as the host disk buffer
or HSTBUF. Physical sectors are read into this buffer and written to the disk
from it.

In order to optimize this blocking/deblocking routine, the BIOS has code in it
to reduce the number of times that an actual disk read or write occurs. A side effect
is that at any given moment, several 128-byte “sectors” may be stored in the
HSTBUPF, waiting to be written out to the disk when HSTBUF becomes full. This
sometimes complicates the logic of the BIOS disk functions. You cannot simply
select a new disk drive, for example, when the HSTBUF contains data destined for
another disk drive. You will see this complication in the BIOS only in the form of
added logical operations; the BIOS disk functions rarely trigger immediate physi-
cal operations. It is easier to understand these BIOS functions if you consider that

Chapter 6: The Basic Input/Output System 153

they make requests—and that these requests are satisfied only when it makes
sense to do so, taking into account the blocking/ deblocking logic.

HOME: Home Disk
HOME sets the requested track and sector to 0.

SELDSK: Select Disk

SELDSK does not do what its name implies. It does not (and must not)
physically select a logical disk. Instead, it returns a pointer in the HL register pair
to the disk parameter header for the logical disk specified in register C on entry.
C = 0 fordrive A, | for drive B, and so on. SELDSK also stores this code for the
requested disk to be used later in the READ and WRITE functions.

If the logical disk code in register C refers to a nonexistent disk or to one for
which no disk parameter header exists, then SELDSK must return with HL set to
0000H. Then the BDOS will output a message of the form

"BDOS Err on X: Select"

Note that SELDSK not only does not select the disk, but also does not indicate
whether or not the requested disk is physically present —merely whether or not
there are disk tables present for the disk.

SELDSK is called by the BDOS either during disk file operations or by a
program issuing a Select Disk request (B$SELDSK, code 14).

SETTRK: Set Track

SETTRK saves the requested disk track that is in the BC register pair when
SETTRK gets control. Note that this is an absolute track number; that is, the
number of reserved tracks before the file directory will have been added to the
track number relative to the start of the logical disk.

The number of the requested track will be used in the next BIOS READ or
WRITE function (described later in this chapter).

SETTRK is called by the BDOS when it needs to read or write a 128-byte
sector. Legitimate track numbers are from 0 to OFFFFH (65,535).

SETSEC: Set Sector

SETSEC is similar to SETTRK in that it stores the requested sector number
for later use in BIOS READ or WRITE functions. The requested sector number is
handed to SETSEC in the A register; legitimate values are from 0 to OFFH (255).

The sector number is a logical sector number. It does not take into account any
sector skewing that might be used to improve disk performance.

SETSEC is called by the BDOS when it needs to read or write a 128-byte
sector.

154

The CP/M Programmer’s Handbook

SETDMA: Set DMA Address

SETDMA saves the address in the BC register pair in the requested DMA
address. The next BIOS READ or WRITE function will use the DM A address as
a pointer to the 128-byte sector buffer into which data will be read or from which
data will be written.

The default DM A address is 0080H. SETDMA is called by the BDOS when it
needs to READ or WRITE a 128-byte sector.

READ: Read Sector

READ reads ina 128-byte sector provided that there have been previous BIOS
function calls to

SELDSK —*“select” the disk
SETDMA — set the DMA address
SETTRK —set the track number
SETSEC —set the sector number.

Because of the blocking/deblocking code in the BIOS, there are frequent
occasions when the requested sector will already be in the host buffer (HSTBUF),
so that a physical disk read is not required. All that is then required is for the BIOS
to move the appropriate 128 bytes from the HSTBUF into the buffer pointed at by
the DMA address.

Only during the READ function will the BIOS normally communicate with
the physical disk drive, selecting it and seeking to read the requested track and
sector. During this process, the READ function must also handle any hardware
errors that occur, trying an operation again if a “soft,” or recoverable, error occurs.

The READ function must return with the A register set to 00H if the read
operation is completed successfully. If the READ function returns with the A
register set to 01H, the BDOS will display an error message of the form

BDOS Err on X: Bad Sector

Under these circumstances, you have only two choices. You can enter a
CARRIAGE RETURN, ignore the fact that there was an error, and attempt to make
sense of the data in the DMA buffer. Or you can type a CONTROL-C to abort the
operation, perform a warm boot, and return control to the CCP.

As you can see, CP/M’s error handling is not particularly helpful, so most
BIOS writers add more sophisticated error recovery right in the disk driver. This
can include some interaction with the console so that a more determined effort can
be made to correct errors or, if nothing else, give you more information as to what
has gone wrong. Such error handling is discussed in Chapter 9.

If you are working with a hard disk system, the BIOS driver must also handle
the management of bad sectors. You cannot simply replace a hard disk drive if one
or two sectors become unreadable. This bad sector management normally requires

Chapter 6: The Basic Input/Output System 155

that a directory of “spare” sectors be put on the hard disk before it is used to store
data. Then, when a sector is found to be bad, one of the spare sectors is substituted
in its place. This is also discussed in Chapter 9.

WRITE: Write Sector

WRITE is similar to READ but with the obvious difference that data is
transferred from the DMA buffer to the specified 128-byte sector. Like READ,
this function requires that the following function calls have already been made:

SELDSK —“select” the disk
SETDMA —set the DMA address
SETTRK —set the track number
SETSEC —set the sector number.

Again, it is only in the WRITE routine that the driver will start to talk directly
to the physical hardware, selecting the disk unit, track, and sector, and transferring
the data to the disk.

With the blocking/deblocking code, the BDOS optimizes the number of disk
writes that are needed by indicating in register C the type of disk write that is to be
performed:

= normal sector write
1 = write to file directory sector
2 = write to sector of previously unused allocation block.

Type 0 occurs whenever the BDOS is writing to a data sector in an already used
allocation block. Under these circumstances, the disk driver must preread the
appropriate host sector because there may be previously stored information onit.

Type 1 occurs whenever the BDOS is writing to a file directory sector — in this
case, the BIOS must not defer writing the sector to the disk, as the information is
too valuable to hold in memory until the HSTBUF is full. The longer the
information resides in the HSTBUF, the greater the chance of a power failure or
glitch, making file data already physically written to the disk inaccessible because
the file directory is out of date.

Type 2 occurs whenever the BDOS needs to write to the first sector of a
previously unused allocation block. Unused, in this context, includes an allocation
block that has become available as a result of a file being erased. In this case, there
is no need for the disk driver to preread an entire host-sized sector into the
HSTBUEF, as there is no data of value in the physical sector.

As with the READ routine, the WRITE function returns with A set to 00H if
the operation has been completed successfully. If the WRITE function returns
with A set to 01H, then the BDOS will display the same message as for READ:

BDOS Err on X: Bad Sector

156 The CP/M Programmer’s Handbook

You can see now why most BIOS writers add extensive error-recovery and
user-interaction routines to their disk drivers.

For hard disk systems, some disk drivers are written so that they automatically
“spare out” a failing sector, writing the data to one of the spare sectors on the disk.

LISTST: List Status

As you can tell from its position in the list of BIOS functions, the LISTST
function was a latecomer. It was added when CP/M was upgraded from version 1.4
to version 2.0.

This function returns the current status of the list device, using the IOBYTE if
necessary to select the correct physical device. It sets the A register to OFFH if the
list device can accept another character for output or to 00H if it is not ready.

Digital Research’s documentation states that this function is used by the
DESPOOL utility program (which allows you to print a file “simultaneously” with
other operations) to improve console response during its operation, and that it is
acceptable for the routine always to return 00H if you choose not to implement it
fully.

Unfortunately, this statement is wrong. Many other programs use the LISTST
function to “poll” the list device to make sure it is ready, and if it fails to come
ready after a predetermined time, to output a message to the console indicating
that the printer is not ready. If you ever make a call to the BDOS list output
functions, Write Printer Byte and Print String (codes 5 and 9), and the printer is
not ready, then CP/M will wait forever —and your program will have lost control
so it cannot even detect that the problem has occurred. If LISTST always returns a
00H, then the printer will always appear not to be ready. Not only does this make-
nonsense out of the LISTST function, but it also causes a stream of false “Printer
not Ready” error messages to appear on the console.

SECTRAN: Sector Translate

SECTRAN, given a logical sector number, locates the correct physical sector
number in the sector translate table for the previously selected (via SELDSK)
logical disk drive.

Note that both logical and physical sector numbers are 128-byte sectors, so if
you are working with a hard disk system, it is not too efficient to impose a sector
interlace at the 128-byte sector level. It is better to impose the sector interlace right
inside the hard disk driver, if at all; in general, hard disks spin so rapidly that CP/M
simply cannot take advantage of sector interlace.

The BDOS hands over the logical sector number in the BC register pair, with
the address of the sector translate table in the DE register pair. SECTRAN must
return the physical sector number in HL.

If SECTRAN is to be a null routine, it must move the contents of BC to HL
and return.

Chapter 6: The Basic Input/Output System

157

Calling the BIOS Functions Directly

Asa general rule, you should not make direct calls to the BIOS. To do so makes
your programs less transportable from one CP/M system to the next. It precludes
being able to run these programs under MP/M, which has a different form of BIOS
called an extended I/O system, or XIOS.

There are one or two problems, however, that can only be solved by making
direct BIOS calls. These occur in utility programs that, for example, need to make
direct access to the CP/M file directory, or need to access some “private” jump
instructions which have been added to the standard BIOS jump vector.

If you really do need direct access to the BIOS, Figure 6-2 shows an example
subroutine that does this. It requires that the A register contain a BIOS function
code indicating the offset in the jump vector of the jump instruction to which
control is to be passed.

H Equates for use with BIOS subroutine

0003 = WROOT EQU 03H sWarm boot

0006 = CONST EQU Q&H ;Consale status

Q009 = CONIN EQU O9H sConsale input

000C = CONOUT EQU oCcH sConsole output

O00F = LIST EQU OFH sOutput to list device

0012 = PUNCH EQu 12H yOutput ta punch deviece

0015 = READER EQU 15H s Input from reader

0018 = HOME ERU 18H sHome selected disk to track Q

Q0tR = SELDSK EQU 1BH ;Select disk

Q01E = SETTRK EQU 1EH ;Set track

0021 = SETSEC EQU 21H ;Set sector

0024 = SETDMA EQU 24H 3Set DMA address

Q027 = READ EQU 27H sRead 128-byte sectuor

002A = WRITE EQU 2AH sWrite 128-byte sector

002D = LISTST E@U 2DH sReturn list status

0030 = SECTRAN EGU 30H sSectar translate

sAdd further "private" BIOS codes here
H RICS
3 This subroutine transfers contral to the appropriate
H entry in the BIOS Jump Vector, based on a code number
H handzd to it in the L register.
H Entry parameters
H L = Code number (which is in fact the page-relative
3 address of the correct JMP instruction within
H the jump vector)
H All other registers are preserved and handed aver to
s the BIOS routine intact.
3
B Exit parameters
Figure 6-2. BIOS equates

158 The CP/M Programmer’s Handbook

This routine dors not CALL the EIOS routine, therefore

H when the BIQS routine RETurns, it will do sao directly
H to this routine’s caller,
H Calling sequ=nce
H MVI L, CodesNumber
H CALL BIOS
RIOS:
0000 FS PUSH PSW ;Save user’s A register
0001 3AQ200 LDA QOOZH ;Get BIOS JMP vector page from
3 warm boot JMP
0004 &7 MOV H, A sHL -> BIQS JMP vector entry
Q00% Fi PQP PSW tRecover user’s A register
0004 E? PCHL ;Transfer control into the BIOS routine
Figure 6-2. BIOS equates (continued)

LLine Numbers

0072-011&
0120-0270
0275-0286&
0289-0310
0333-0364
0269-0393
0397-0410
0414-0451
0456-0471
0474-0492
0426-0511
0516-0536
0540-0584
0589-0744
0769-0824
0831-0878
0881-0907
0910-095%
0958-0964
0967-0972
0978-0984
0987-1025
1028-1037
1041-105&
1059-1154
1157-1183
11835-1204
1206-1378
1321-1432
1435-1478
1481-1590
1595-1681
1485-17¢4

Functional Component or Routine

BIOS Jump Vector

Initialization Code

Display Message

Enter CP/M

CONST - Console Status

CONIN - Cansole Input

CONOUT - Ceonscle Qutput

LISTST - List Status

LIST - List Output

FPUNCH - Punch Output

READER — Reader Input

IORYTE Driver Select

Device Control Tables

Low-level Drivers for Consale, List,etc,
Disk Parameter Header Tables
Disk Parameter Blocks

Other Disk data areas

SELDSK - Select Disk

SETTRK — Set Track

SETSEC ~ Set Sector

SETDMA - Set DMA Address

Sector Skew Tables

SECTRAN - Logical to Physical Sector translation
HOME — Home to Track O
Deblocking Algorithm data areas
READ - Read 128-byte sector
WRITE — Write 128-byte sector
Deblocking Algorithm

Buffer Move

Deblocking subroutines

" Floppy Physical Read/Write

S 1/4" Floppy Physical Read/Write
WROQT - Warm Boot

Figure 6-3.

Functional Index to Figure 6-4

Chapter 6: The Basic Input/Output System

159

Example BIOS

The remainder of this chapter is devoted to an example BIOS listing. This
actual working BIOS shows the overall structure and interface to the individual
BIOS subroutines.

Unlike most BIOSs, this one has been written specifically to be understood
easily. The variable names are uncharacteristically long and descriptive, and each
block of code has commentary to put it into context.

Each source line has been sequentially numbered (an infrequently used option
that Digital Research’s Assembler, ASM, permits). Figure 6-3 contains a func-
tional index to the BIOS as a whole so that you can find particular functions in the
listing in Figure 6-4 by line number.

0001 <-- Line Number
0002
0003
0004
Q00%
0004
0007
0008
0009
0010 3030
0011 3730
0012 3534
0013 3238
0014
0015
0014
0017
0018
Q019
0020
0021
0022
0023
0024
0025
Q026
0027
0028
Q029
0030
Q03¢
0032
0033
0034
0033
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

3 Figure é-4.

i

X3 »*

P Simple BIOS Listing =

3 * *

: .

4

VERSION EQU <007 sEquates used in the sign on message
MONTH EQU ‘077

DAY EQuU ‘187

YEAR EQu v82”

H

H L]

= ®
1% This BIOS is for a computer system with the following %
3% hardware configuration : *
(R *
y% - 8080 CPU *
X ~ &4KBytes of RAM *
3% - CRT/keyboard controller that transfers data *
3% as though it were a serial port (but reguires *
1A no baud rate generator or USART programming) *
(A ~ A serial port, used for both list and "reader"/ =
3% “punch" devices. The serial port chip is an *
LR Intel 8251A with an 8253 baud rate generator. *
(13 ~ Two 5 1/4" mini~floppy, double-sided, double- *
1A density drives. These drives use 512-byte sectors. *
1A These are used as logical disks A: and B:. *
1A - Two 8" standard diskette drives (128-byte sectors). *
124 These are used as logical disks C: and D:. *
'E] *
3 Two intelligent disk controllers are used, one for *
= each diskette type. These controllers access memory *
1A directly, both to read the details of the *
1% operations they are to perform and alsc to read *
3 and write data from and to the diskettes. *
3% *
3 ® »*

Equates for defining memory size and the base address and
length of the system components.

Figure 6-4. Simple BIOS listing

160 The CP/M Programmer’s Handbook

0044 H

0047 0040 = Memor y$Size EQu 64 sNumber of Kbytes of RAM

0048 i

0049 3 'The BIOS Length must be determined by inspection.

Q050 3 Comment out the ORG BIOS®Entry line below by changing the first

0051 3 character to a semicolon. (This will make the Assembler start

0052 1 the BIOS at location 0.) Then assemble the BIOS and round up to

0053 3 the nearest 100H the address displayed on the console at the end

0034 35 of the assembly.

0055 H

0056 0900 = BIOSsi.ength EQU 0%00H

0057 i

0058 0800 = CCPs$Length EQU Q800H sConstant

0059 OEOO = BDOS$Length EQU OEOOH sConstant

0060 H

ggg; 0008 = Overallslength EQU ((CCP$lL.ength + BDOSSLength + BIOS$Length) / 1024) + 1
3

00463 EO0Q00 = CCP$Entry EQU (Memory$Size - QOverallslenath) = 1024

Q064 E806 = BDOSSEntry EQU CCP$Entry + CCP$Length + &

0043 F&00 = BIOSSEntry EQU CCP$Entry + CCPsLength + BDOS$Length

0086 H

0087 H

0048 H

0069

0070 F600 ORG BIOSSEntry ;Assemble code at BIOS address

0071 H

0072 s BIOS jump vector

0073 t+ Control will be transferved to the appropriate entry point

Q074 + from the CCP or the BDOS, both of which compute the relative

0075 t address of the BIOS jump vector in order to locate it.

0076 t Transient programs can also make direct BIOS calls transferring

0077 + control to location xxQOH, where xx is the value in location

0078 3 O0002H.

0079 5

0080 F&00 CIFIFS JMP BOOT 3Cold boot —- entered from CP/M bootstrap loader

0081 Warm$Boot$Entry: 3 Labelled so that the initialization code can

0082 + put the warm boot entry address down in location

0083 t O0001H and 0002H of the base page

Q084 F&03 C329FE JMP WBOOT sWarm boot —— entered by jumping to location 0000OH.

0085 3 Reloads the CCP which could have been

0084 3 overwritten by previcus program in transient

0087 35 Program area

0088 F&046 C362F8 JMP CONST sConsole status —- returns A = OFFH if there is a

0089 3 console kevboard character waiting

0090 F&09 C378F8 JMP CONIN 3sConsole input —-- returns the next conscle keyboard

0091 3 character in A

0092 F40C C3B6FS JMP CONOUT j;Console output -— outputs the character in C to

0093 3 the console device

0094 F&OF C3ACFS JMP LIST sList output ——- outputs the character in C to the

0095 s list device

0096 Fé612 C3BCF8 JMP PUNCH sPunch output —- outputs the character in C to the

0097 3 logical punch device

0098 F615 C3CDF8 JMP READER jReader input —- returns the next input character from

0099 + the logical reader device in A

0100 Fé618 C3IDIFB JMP HOME sHomes the currently selected disk to track O

0101 Fé1iB C32BFB JMP SELDSK 3Selects the disk drive specified in register C and

0102 . 3 returns the address of the disk parameter header

0103 F&1E C398FB JMP SETTRK ;Sets the track for the next read or write cperation

0104 3 from the BC register pair

0105 Fé21 C3BEFB JMP SETSEC ;Sets the sector for the next read or write operation

010& s from the A register

0107 Fé24 C38TFB JMP SETDMA ;Sets the direct memory address (disk read/write)

0108 3+ address for the next read or write operation

0109 3 from the DE register pair

0110 F&27 CIFBFB JMP READ 3sReads the previously specified track and sector from

o111 3 the selected disk into the DMA address

0112 Fé2A C31SFC JMP WRITE ;Writes the previously specified track and sector onto

0113 3 the selected disk from the DMA address

0114 F62D C394F8 JMP LISTST :Returns A = OFFH if the list device can accept

0115 ; another output character

0116 F6&30 C3CDFB JMP SECTRAN ;Translates a logical sector into a physical one

0117 H

0118 3

0119 H

0120 3 The cold boot initialization code is only needed conce.

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

161

o121

3 It can be overwritten once it has been executed.
0122 3 Therefore, it is "hidden" inside the main disk buffer.
0123 3 When control is transferred to the BOOT entry point, this
0124 3 code will be executed, only being overwritten by data from
0125 ?t the disk once the initialization procedure is complete.
0126 $
0127 3 To hide code in the buffer. the buffer is first declared
o128 t+ normally. Then the value of the location counter following
o129 ¢t the buffer is noted. Then, using an ORG (ORiGin) statement, the
0130 3 location counter is "wound back" to the start of the buffer
01314 + again and the initialization code written normally.
0132 1 At the end of this code, another ORG statement is used to
0133 t set the location counter back as it was after the buffer had
0134 1 been declaved.
0135 H
0134 3
0137 0200 = Physical#Sector$Size EQu 512 3This is the actual sector size
0138 sfor the S 1/4" mini-floppy diskettes.
0139 sThe 8" diskettes use 128-byte sectors.
0140 sDeclare the physical disk buffer for the
0141 35 1/4" diskettes
0142 F&33 Disksbuffer: DS Physical$Sector$Size
0143 3
0144 sSave the location counter
0143 F833 = AftersDisksBuffer EQU $ 3% = Current value of location counter
0145 $
O}&7 Fé33 ORG Disk$Buffer sWind the location counter back
048 3
0149 Initialize$Stream: ;This stream of data is used by the
0150 sinitialize subroutine. It has the following
0151 ;formats
0152 H
0153 3 DB Port number to be initialized
0154] DB Number of bytes to be cutput
0159 3 DB XX, XX, X%, %% data to be output
0156 3 H
0157 3 :
0158 4 DB Part number of OOH terminator
0159 H
Q140 3Note : On this machine, the conscle port does
0161 3 not need to be initialized. This has
0162 3 already been done by the PROM bootstrap code.
0163 3
0144 sInitialize the B8251A USART used for
0145 the list and communications devices.
0146 F633 ED DB Communication$Statuss$Port sPort number
0187 F&34 06 DB é sNumber of bytes
0148 F&35 00 DB] 3Get chip ready to be programmed by
0149 F&36 00 0B] 3+ sending dummy data out to it
0170 Fé37 00 DB 0o
0171 Fé38 42 ne 0100%0010B sReset and raise data terminal ready
0172 Fé39 6E OB 01$10%11$10B 71 stop bit, no parity, 8 bits per character
0173 3 baud rate divide factor of 16,
0174 F&3A 25 DB 0010$0101B tRaise request to send, and enable
0175 3 transmit and receive.
0176 H
0177 sInitialize the 8253 programmable interval
0178 3 timer used to generate the baud rate for
0179 3 the 8251iA USART
0180 F6&3B DF DB Communication$Baud$Mode sPort number
0181 F&3C 01 DB 1 sNumber of bytes
0182 F&3D Bé DB 108113011%0B 1Select counter 2, load LS byte first,
0183 3 Mode 3 (for baud rates), binary count.
0184 i
0185 F&3E DE DB Communication$Baud$Rate sPort number
0186 F63F 02 DB 2 sNumber of bytes
0187 F&840 3800 oW 0038H 31200 baud (based on 16X divide-down selected
0188 3 in the 8251A USART)
0189 ;
0190 Fé&42 00 DB 1] sPort number of O terminates
0194 i
0192 H
0193 3 Equates for the sign-on message
0194 H
0195 000D = CR EQU ODH 3jCarriage return
Figure 6-4. (Continued)

162 The CP/M Programmer’s Handbook

0198 Q00A = LF EQU 0AH sLine feed

0197 f

o198 Signon$Message: sMain sign-on message

0199 F&43 43502F4D20 DR “CP/M 2.2.°

0200 F44C 3030 DW VERSION sCurrent version number

0201 F&4E 20 DB o

Q202 F&4F 2037 oW MONTH sCurrent date

0203 F&S1 2F DB A

0204 Feé52 3135 oW DAY

0205 F&54 2F DB At

0206 F&55 3832 DW YEAR

0207 F4&57 ODOAOA DB CR,LF,LF

0208 F&35A 33494D70&C DB “Simple BIOS’,CR,LF,LF

0209 Fé48 4469736B20 DB “Disk configuration :°,CR,LF,LF

0210 F&7F 2020202020 DB ’ A: 0.35 Mbyte 3" Floppy’,CR,LF

0211 F49D 2020202020 DB < B: 0.35 Mbyte 5" Floppy~“,CR,LF,LF

0212 F4BC 2020202020 DB i C: 0.24 Mbyte 8" Floppy’,CR,LF

0213 F&8DA 2020202020 DB - D: 0.24 Mbyte 8" Floppy’,CR,LF

0214 H

0215 FéF8 00 DB o]

0216 i

0217 0004 = Defaul t$Disk EQU QQ04H sDefault disk in base page
0218 ; .

0219 BOOT: sEntered directly from the BIOS JMP vector.

0220 sControl will be transferred here by the CP/M

0221 3 bootstrap loader.

0222 3The initialization state of the computer system
0223 1 will be determined by the

0224 ;3 PROM bootstrap and the CP/M lcader setup.

02235 3

0226 sInitialize system.

o227 :This routine uses the Initialize$Stream
0226 ; declared above.

0229 F&F9 F3 DI ;Disable interrupts to prevent any
0230 s side effects during initialization,
0231 F&FA 2133F6 LXI HyInitialize$Stream sHL -> Data stream

0232 3

0233 InitializesLoop:

0234 F&FD 7€ MOV AM ;Get port number

0235 F&FE B7 ORA A sIf OOH, then initialization complete
0236 F&FF CALI3F7 Jz Initialize$Complete

0237 F702 320AF7 STA Initialize$Port ;Set up OUT instruction

0238 F705 23 INX H sHL => Count of number of bytes to output
0239 F706 4E MOV C/M ;Get byte count

0240 i

0241 Initialize$Next$Byte:

0242 F707 23 INX H $HL —-> Next data byte

0243 F708 7E MoV AM ;Get next data byte

0244 F709 D2 DB ouT ;0utput to correct port

0245 InitializesPort:

0246 F70A 00 DB 0 <~ Set above

0247 F70B OD DCR C 1Count down

0248 F70C C207F7 JNZ InitializeSNext$Byte 1Go back if more bytes

0249 F70F 23 INX H $HL -=> Next port number

0250 F710 C3FDFé JMP Initialize$loop ;Go back for next port initialization
0251 H

0252 InitializesComplete:

0253 i

0254

0255 F713 IEO01 MVI A, 00$00800801B ;Set IOBYTE to indicate terminal
0284 F715 320300 STA 10BYTE 1 is to act as conscle

0257

0258 F718 2143F6 [9¢ H, SignontMessage yDisplay sign-on message on console
0259 F71B CD33F8 CALL Display$Message

0260 i

0241

Q262 F71& AF XRA A 31Set default disk drive to A:

0263 F71F 320400 STA Default$Disk

02464 F722 FB El sInterrupts can now be enabled

Q265 5

024646 F723 C340F8 JMP EntersCPM ;Complete initialization and enter
0267 3 CP/M by going to the Consale Command
0248 ;5 Processor,

0269 3

Q270 ; End of cold boot initialization code

0271 H

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 163

0272 F833 ORG After$DisksBuffer sReset location counter

0273 H

0274 3

Q275 Display$Message: ;Displays the specified message on the console.
0276 30n entry, HL points to a stream of bytes to be
0277 3 output. A OOH-byte terminates the message.
0278 F833 7E Mav A,M ;Get next message byte

0279 F834 B7 QRA A sCheck if terminator

0280 F835 C8 RZ 1Yes, return to caller

0281 FB836 4F MoV C,A :Prepare for output

o282 F837 ES PUSH H 7Save message pointer

0283 F838 CDB4F8 CALL CONOUT sGo to main console output routine
0284 F83B E1l POP H sRecover message pointer

0285 FB3C 23 INX H 3Move to next byte of message

0284 F83D C333F8 JMP Display$Message ;Loop until complete message output
o287 $

0288 '

0289 Enter$CPM: ;This routine is entered either from the cold or warm
0290 3 boot code. It sets up the JMP instructions in the
0291 .3 base page, and also sets the high-level disk driver‘s
0292 3 input/output address (also known as the DMA address).
0293 H

0294 F840 3EC3I MvI A, JMP sGet machine code for JMP

0298 F842 320000 STA 0000H 3Set up JMP at location OOOOH

0296 FB45 320500 STA 000SH 3 and at location 000SH

0297 H

0298 FB848 2103Fé LXI H, Warm$Boot $Entry ;Get BIOS vector address

0299 F84B 220100 SHLD 0001H 3Put address at location 0QOIH

0300

0301 FB84E 2106E8 LxI H, BDOS$Entry ;Get BDOS entry point address

0302 F851 220400 SHLD [3Put address at location 0005H

0303 5

0304 F854 018000 LxI B, 80H sSet disk 1/0 address to default

0305 F8S57 CD&SFR CALL SETDMA 3Use normal BIOS routine

0306 '

0307 F85A FB El sEnsure interrupts are enabled

0308 F83B 3A0400 LDA Defaults$Disk sTransfer current default disk to
0309 F8SE 4F Mov C,A 3 Console Command Processor

0310 F85F C300EQ JMP CCP$Entry s Transfer to CCP

0311 H

0312 H

0313 3 Serial input/ocutput drivers

0314 H

0315 + These drivers all look at the IOBYTE at locatieon

0314 3 O003H, which will have been set by the cold boot routine.

0317 3 The IOBYTE can be modified by the STAT utility, by

0318 3 BDOS calls, or by a program that puts a value directly

0319 3 into location QQO3H.

0320 3

0321 3 All of the routines make use of a subroutine, Select$Routine,
Q322 1 that takes the least significant two bits of the A register
0323 + and uses them to transfer control to one of the routines whose
0324 3 address immediately follows the call to Select$Routine.

0325 3 A second entry point, Select$Routines2l, uses bits

0325 3 2 and 1 to do the same job —- this saves some space

0327 s by avoiding an unnecessary instruction.

0328 3

0329 0003 = 10BYTE EQU 0003H 11/0 redirection byte

0330 3

0331 H

0332 1]

0333 CONST: sCet console status

0334 sEntered directly from the BIOS JUMP vector
0338 3 and returns a parameter that reflects whether
0336 3 there is incoming data from the console.
0337 H

0338 1A = Q0H (zero flag set) if no data

0339 3A = OFFH (zero flag clear) if data

0340 s

0341 ;CONST will be called by programs that

0342 ;5 make periodic checks to see if the computer
0343 ;3 operator has pressed any keys —— for example,
0344 3 to interrupt an executing program.

0345 H

0346 FB842 CDSAFS CALL GetsConsclesStatus ;Return A = zero or nonzero
0347 tAccording to status, then convert

Figure 6-4. (Continued)

464 The CP/M Programmer’s Handbook

0348 5 to return parameter convention.
0349 F865 B7 ORA A ;Set flags to reflect status
0350 F8és C8 RZ sIf O, no incoming data
0351 F8é7 3EFF MVI A, OFFH $0therwise return A = OFFH to
0352 F849 C9 RET ; indicate incoming data
0353 i
0334 GetsConsole$Status:
0355 F8&A 3A0300 Lba IOBYTE ;Get 1/0 redirection byte
0358 s:Console is selected according to
0357 y bits 1,0 of IOBYTE
0358 F8éD CDDCF8 CALL SelectsRoutine ;Select appropriate routine
0359 ;These routines return to the caller
0360 3 of GetsConsole$Status.
0361 FB870 F&F8 DW TeletypeInStatus 300 <~ IOBYTE bits 1,0
0362 F872 FCF8 DW TerminalsInsStatus 301
0363 F874 O2F9 W CommunicationsIns$Status 310
0364 F876 08F9 DW DummyInsStatus 311
0365 H
0366 H
0367 $
0368 ’
03469 CONIN: 3Get console input character
0370 sEntered directly from the BIOS UMP vector;
0371 7 returns the next data character from the
Q372 3 Console in the A register. The most significant
0373 3 bit of the data character will be O, except
0374 3 when “reader" {(communication port) input has
0375 3 been selected. In-this case, the full eight bits
0376 3 of data are returned to permit binary data to be
0377 3 received.
0378 3
0379 iNormally, this routine will be called after
0380 3 a call to CONST has indicated that a data character
0381 3 is ready, but whenever the CCP or the BDOS can
0382 3 Proceed no further until console input occurs,
0383 s then CONIN will be called without a preceding
0384 3 CONST call.
0385 H
0386 F878 3A0300 LDA I0BYTE sGet I/0 redirection byte
0387 Fa7B CDDCF8 CALL Select$Routine j3Select correct CONIN routine
0388 s These routines return directly
0389 3 to CONIN’s caller.
0390 F87E 20F9 D TeletypesInput 300 <- IOBYTE bits 1,0
0391 F880 2&F9% oW Terminal¢lnput ;01
03%2 F882 2FF9 oW Communication$Input 510
0393 F884 35F% DW Dummy$Input s1t
0394 H
0395 H
0396 i
0397 CONQUT: sConsole output
0398 ;Entered directly from BIOS JMP vector;
0399 s outputs the data character in the C register
0400 1 to the appropriate device according to bits
0401 5 1,0 of I0BYTE
0402 H
0403 F8846 3A0300 LDA IOBYTE 3Get I/0 redirection byte
0404 F889 CDDCF8 CALL Select$Routine ;Select correct CONOUT routine
0405 sThese routines return directly
0404 5 to CONOUT’s caller.
0407 Fs88C 38F9 bW Teletype$Output 300 <~ 10BYTE bits 1,0
0408 F88E 3EFY W Terminal$Qutput s01
0409 F890 44F9% DW CommunicationsOutput 3110
0410 F892 4AF9 DW Dummy$0utput [BSS
0411 H
0412 H
0413 H
0414 LISTST: sList device (output) status
0413 sEntered directly from the BIOS UMP vectors;
0414 7 returns in A list device status that
0417 7y indicates whether the list device can accept
0418 7 another output character. The IOBYTE’s bits
0419 3 7,6 determine the physical device used.
0420 H
0421 1A = O0H (zero flag set): cannot accept data
0422 $A = OFFH {(zero flag clear): can accept data
0423 ¥
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 165

0424 ;Digital Research’s documentation indicates
0425 ;3 that you can always return with A = OOH

0426 3 ("Cannot accept data") if you do not wish to
0427 t implement the LISTST routine. This is NOT TRUE.
0428 31f you do not wish to implement the LISTST routine
0429 t always return with A = OFFH {("Can accept data").
0430 3The LIST driver will then take care of things rather
0431 3 than potentially hanging the system.

0432 5

0433 F894 CDYCER CALL GetsListsStatus ;Return A = zero or nonzero

0434 3} according to status, then canvert
0435 : to return parameter convention

0436 F897 B7 ORA A 3Set flags to reflect status

0437 Fe98 C8 RZ sIf O, cannot accept data for output
0438 FB99 IEFF MvI A, OFFH ;0therwise return A = OFFH to

0439 Fa9B C9 RET 3 indicate can accept data for cutput
0440 3

0441 CetsList$Status:

0442 F89C 3A0300 LDA IOBYTE ;Cet 1/0 redirection byte

0443 F8%F 07 RLC tMove bits 7,6 to 1,0

0444 FB8AO0 07 RLC

0445 F8Al1 CDDCFs CALL Select$Routine ;Select appropriate routine

04445 sThese routines return directly
0447 3 to GetsList$Status’s caller.
0448 FBA4 OBF9 DuW Teletypes$Outs$Status 100 <~ 10BYTE bits 1,0
0449 FBAS 11F9 DW TerminalsQutsStatus ;01

0450 FBAS 17F9 W CommunicationsQutsStatus 310

0451 F8AA 1DF9 DW DummyOutStatus 311

0452

0453 ;

0454 i

0455 H

0456 LIST: jList output

0457 sEntered directly from BRIOS JMP vector;

0458 3 cutputs the data character in the C register
0459 s to the appropriate device according to bits
0440 3 7,6 of 10BYTE

0461 s

0442 FBAC 3A0300 LDA 10BYTE sGet I/0 redirection byte

0463 FBAF 07 RLC sMove bits 7,6 to 1,0

0464 F8BO 07 RLC

04435 F8B1 CDDCFa CALL SelectsRoutine ;Select correct LIST routine
0444 sThese routines return directly
04587 s to LIST”s caller.

0448 F8B4 3I8FY oW Teletype$Quiput 300 <- IOBYTE bits 1,0

0449 FBRS 3EFY oW Terminal$Output 301

0470 FOB8 44F9% DW Communication$Qutput 310

0471 FS8BA 4AF9% oW Dummy$Qutput 511

0472

0473 H

0474 H

0475 5

0478 PUNCH: sPunch output

0477 3Entered directly from BIOS UMP vectar;

0478 t outputs the data character in the C register
0479 ? to the appropriate device according to bits
0480 1 5,4 of 10BYTE

0481 s

0482 F8BC 3A0300 LDa I0BYTE 1Get 1/0 redirection byte

0433 F8BF OF RRC tMove bits 5,4 to 2,1

0484 FaCO OF RRC

0485 Fac1 OF RRC

0484 FOC2 CDDOFS CALL Select$Routines2i 1Select correct PUNCH routine
0487 t$These routines return directly
0488 3 to PUNCH’s caller.

0489 F8CS 39F9 DW TeletypesQuiput 300 <— IOBYTE bits 1,0

0490 F8C7 4AF9 W Dummy$CQutput ;01

0491 F8CY 44F9 oW Communication$Output ;10

0492 F8CB 3EF9 oW TerminalsOutput 11

0493 H

0494 H

04935 $

0496 READER: tReader input

0497 sEntered directly from BIOS JMP vector;

0498 3 inputs the next data character from the
0499 3 reader device into the A register

Figure 6-4. (Continued)

166

The CP/M Programmer’s Handbook

0500 :The appropriate device is selected according
0501 3 to bits 3,2 of IOBYTE.
0502 s
0503 F8CD 3A0300 LDA IORYTE ;Get I/0 redirection byte
0504 F8DO OF RRC sMove bits 3,2 to 2,1
0505 F8D1 CDDDF8 CALL Select$Routines21” 3Select correct READER routine
0506 sThese routines return directly
0507 + to READER’s caller.
0508 F8D4 38F9 DW TeletypefOutput 500 <~ IOBYTE bits 1,0
Q509 F8Dé 4AF? DW Dummy#COutput ;01
0510 F8D8 44F9% DW Communication$Qutput 310
0511 FS8DA 3EFY [a7] Terminal$OQutput P11
0512
0513 H
0514 1
0515 5
0516 Select$Routine: sTransfers control to a specified address
0517 ;7 following its calling address according to
0518 3 the value of bits 1,0 in A,
0519 F8DC 07 RLC ;Shift select values into bits 2,1
0520 3 in order to do word arithmetic
0521 H
0522 Selects$Routines21: sEntry point to select routine selection bits
0523 7 are already in bits 2,1
0524 F3DD E&06 ANI 0000%0110R slsolate just bits 2,1
0525 F8DF E3 XTHL ;HL -> first word of addresses after
0526 3 CALL instruction
0527 FS8EQ SF Mav E,A ;Add on selection value to address table
0528 F8EL1l 1600 MVI D,0 ; base
0529 FSE3 19 DAD D sHL -> selected routine address
0530 sGet routine address into HL
0531 FB8E4 7E MOV A M ;LS byte
0532 F8ES 23 INX H JHL ~> MS byte
0533 FB8Es 66 MoV H.M sMS byte
0534 FBE7 &F MOV LA sHL -> routine
0535 FB8ES E3 XTHL ;Top of stack - routine
0536 F8E? C9 RET sTransfer to selected routine
0537 H
0538 i
0539 H
0540 3 Input/Output Equates
0541 3
0542 OQOED = Teletypes$Status$Port EQU OEDH
0543 OQOEC = TeletypesDatasPort EQu OECH
0544 0001 = TeletypesQuiput$Ready Equ 0000$0001B sStatus mask
0345 0002 = Teletype$Input$Ready EQU 00Q0$0010R sStatus mask
0544 3
0547 0001 = Terminal$StatussPort EQU C1H
05483 0002 = TerminalsDatas$Port Equ 02H
0549 0001 = Terminal$Qutput$Ready EQU 0000$0001B ;Status mask
0550 Q002 = Terminal$Input$Ready EQU 0000$0C10R ;Status mask
0551 5
0552 QQED = Communication$Status$Port EQU OEDH
0853 OQO0EC = CommunicationsDatasPort EQU OECH
Q0554 0001 = Communication$Output$Ready EQU 0000%$0001B ;Status mask
Q555 0002 = Communication$Input$Ready EQU 0000%001 0B ;Status mask
0556 H
0557 OQODF = Communication$Baud$Mode EQU ODFH sMode Select
0558 OCDE = Communication$BaudsRate EQU ODEH ;Rate Select
0559 H
0560 H
0561 3 Serial device control tables
0562 $
0563 3 In order to reduce the amount of executable code,
0344 3 the same low-level driver code is used for all serial ports.
03565 + On entry to the low-level driver, HL points to the
0566 3 appropriate control table.
Q567 3
0548 TeletypesTable:
0549 FB8EA ED D TeletypetStatus$Port
0570 FSEB EC DB TeletypesDatasPort
057t FB8EC 01 DB Teletype$Output$Ready
0572 F8ED 02 DB TeletypesInput$Ready
0573 3
0574 Terminals$Table:
0575 FBEE 01 Terminal$Status$Port
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

167

0576 FSEF 02 DB Terminals$Datas$Port

0577 F8FO0 01 DB TerminalsOutput$Ready

0578 F8F1 02 DB Terminal$Input$Ready

0579]

0580 Communication$Table:

0581 F8F3 ED DB Communication$StatussPort

0582 F8F3 EC DB Communication$DatasPort

0583 F8F4 01 DB Communication$Output$Ready

0584 FSFS 02 DB Communications$Input$Ready

05835 H

0586 H

0587 '

0588 ¥

0589 3 The following routines are "called" by Select$Routine

03590 3 to perform the low-level input/output

0591 ?

0592 TeletypesInsStatus:

0593 F8F& 21EAFS X1 H, Teletype$Table sHL -> control table

0594 F8F9 C34BF9 JMP Input$Status sNote use of JMP. InputsStatus

0595 3 will execute the RETurn.

0596 :

0597 Terminal$InsStatus:

0598 FRFC 21EEF8 LX1 H, Terminal$Table tHL <> control table

0599 FaFF C34BF9 JMP Inputs$Status sNote use of JMP. Inputs$Status

0600 ? will execute the RETurn.

05018 3

Q602 CommunicationInStatus:

0403 F902 21F2F8 LXI H, Communication$Table sHL ~> control table

0404 F90S CI4BF9 JMP Input$Status tNote use of JMP. InputsStatus

0605 3 will execute the RETurn.

0606 ;P

0407 DummyInStatus: sDummy status, always returns

0608 F908 3EFF MV1 A, OFFH s indicafing incoming data is ready

0609 F90A C9 RET

0610 H

0611 3

0612 TeletypeOutStatus:

04613 F90B 21EAFS LXI H,TeletypesTable 3HL -> control table

0614 F90E C3S6F? JMP OutputsStatus sNote use of JMP. Output$Status

0615 3 will execute the RETurn.

0616 H

04817 Terminal$OuteStatus:

0618 F911 21EEF8 LXI1 H, Terminal$Table sHL -> control table

0619 F914 C3S4FY JMP QutputsStatus :Note use of JUMP. OutputsStatus

0620 3 will execute the RETurn.

0621 3

0622 CommunicationsOutsStatus:

0623 F917 21F2F8 LXl H,CommunicationsTable $HL => control table

0624 F91A C3B6F? JMP QutputsStatus sNote use of JMP. Output$Status

0425 3 will execute the RETurn.

0626 3

0627 Dummy$OutsStatus: sDummy status, always returns

0428 F91D 3IEFF MVl A, OFFH 3y indicating ready for output

0629 F91IF C9 RET

0630 i

0831 5

0632 Teletypa$Inputs:

0433 F920 21EAFS LXI H,TeletypesTable tHL -> control table

0434 F923 C380F9 JMP InputsData sNote use of JMP. Input$Data

0635 3 will execute the RETurn.

0636 §

0637 Terminal$Input:

0638 F926 21EEF8 LXI H, Terminal$Table $HL -> control table

0439 3 will execute the RETurn.

0640 F929 CD&OF9 CALL Input$Data y%% Special case »=

0641 ; InputsData will return here

0642 F92C E&TF ANI 7FH 3 so that parity bit can be set O

0643 F92E C9 RET

0é44 3

0545 Communication$Input:

0646 F92F 21F2F8 LX1 H,Communication$Table sHL —> control table

0647 F932 C360F9 JMP InputsData sNote use of JMP. InputsData

0648 s+ will execute the RETurn.

0649 ;

0630 Dummy$Input: sDummy input, always returns

0451 F935 3E1A MVI A, 1AH 3 indicating CP/M end of file
Figure 6-4. (Continued)

The CP/M Programmer’s Handbook

0452 F937 C9 RET
0653 H
0&54 H
0453 H
0658 3
0857 Teletypes$Output:
0458 F938 21EAF8 LXr H,Teletypes$Table sHL ~> control table
0659 F93B CI70F9 JMP Output$Data sNote use of JMP. Outputs$bData
08460 1t will execute the RETurn.
0881 3
0682 Terminal$Output:
0643 F93E 21EEF8 LXI H, Terminal$Table sHL. -> contreol table
0444 3 will execute the RETurn.
0665 F941 CI70F9 MP Output$Data sNote use of JUMP. Output#Data
04é6 3 will execute the RETurn.
0667 3
0668 CommunicationsOutput:
0669 F944 21F2F8 LXr H,Communication$Table sHL -> control table
0670 F947 C370F9 JMP OutputsData ;Note use of JMP. OutputsData
0671 3 will execute the RETurn.
0672 ’
0673 Dummy$Qutput: sDummy output, always discards
0674 F94A C9 RET 3 the output character
0875 H
0676 ;
0677 H
0478 ?
0679 3 These are the general purpose low-level drivers.
0480 3 On entry, HL points to the appropriate control table.
0481 3 For output, the C register contains the data to be output.
0882 i
0683 InputsStatus: 3Return with A = OOH if no incoming data,
0484 ;3 otherwise A = nonzero.
0485 F94B 7E MOV AM ;Get status port
0686 F94C 3250F9 STA InputsStatussPort su%x Self-modifying code #=x
0487 F94F DB DB IN sInput to A from correct status port
0688 3
0489 Input$StatussPort:
0490 F9350 00 DB 00 3<— Set above
0691 F9%1 23 INX H sMove HL to point to input data mask
0692 F952 23 INX H
0493 €953 23 INX H
0694 F954 A& ANA M iMask with input status
0695 F955 C% RET
0696 H
0697 '
0498 OutputsStatus: sReturn with A = OOH if not ready for output
0899 3 otherwise A = nonzera.
0700 F956 7E MoV A M 3Get status port
0701 F9S57 32%BF9 STA OutputsStatussPort pax% Self-modifying code »xx
0702 F95A DB DB IN 1Input to A from correct status port
0703 $
0704 QutputsStatussPort:
0703 F95SEB 00 DB 00 3<{- Set above
0706 F95C 23 INX H sMove HL to point to output data mask
0707 F9SD 23 INX H
0708 F9S5E Aé ANA M sMask with output status
0709 F93F C9 RET
0710 H
0711 1
0712 Inputs$Data: sReturn with next data character in A.
0713 ;Wait for status routine to indicate
0714 3 incoming data.
0715 F940 ES PUSH H :Save control table pointer
0716 F9&1 CDABF9 CALL Inputs$Status 3Get input status in zerc flae
0717 F944 E1L POP H sRecover control table pointer
0718 F965 CASOF9 Jz InputsData sWait until incoming data
0719 F948 23 INX H sHL -> data port
Q720 F949 7E MOV AM sGet data port
0721 F98A 326EF® STA InputeDatasPort yxxx Self-modifying code xxx
0722 F94D DB DB IN 1Input to A from correct data port
0723 ¥
0724 InputsDatasPort:
0725 F94E 00 DB o 3<{- Set above
0726 F9&F C9 RET
0727 '
Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

169

0728 §

0729 OutputsData: 3Output the data character in the C register.

0730 sWait for status routine to indicate device

0731 3 ready to accept another character

0732 F970 ES PUSH H sSave control table pointer

0733 F971 CDS6F® CALL OutputeStatus 3C0et output status in zero flag

0734 F974 EL POP H sRecover control table pointer

Q735 F9735 CA70F9 Jz OutputsData sWait until ready for output

0736 F978 23 INX H $HL -> output port

Q737 F979 7€ Mov AM 3Get output port

0738 F97A 327FF9 STA OutputsDatasPaort sunn Self-modifying code »=x

0739 F97D 79 MoV A.C 3Get data character to be output

0740 F97E D3 DB ouT sOutput data to correct port

0741 H

0742 Qutput$DatasPort:

0743 F97F 00 DB [} 3<{— Set above

0744 F980 C9 RET

074S 3

0748 4

0747 3 High level diskette drivers

0748 H

0749 3 These drivers perform the following functionss

0750 H

0751 y SELDSK Select a specified disk and return the address of

0752 H the appropriate disk parameter header

0753 : SETTRK Set the track number for the next read or write

0734 5 SETSEC Set the sector number for the next read or write

0755 ; SETDMA Set the DMA (read/write) address for the next read or write.

0756 3 SECTRAN Translate a logical sector number intoc a physical

0757 3 HOME Set the track to O so that the next read or write will

0758 H be on Track O

075% 5

0760 t In addition, the high-level drivers are responsible for making

07481 3 the 5 1/4" floppy diskettes that use a S5i2-byte sector appear

07462 3 to CP/M as though they used a 128-byte sector. They do this

07463 5 by using what is called blocking/deblocking code,

0744 s described in more detail later in this listing,

0765 3 Just prior to the code itself.

0766 ;

0767 §

0768 H

0769 3 Disk parameter tables

0770 i

0771 3 As discussed in Chapter 3, these describe the physical

0772 3 characteristics of the disk drives® In this example BIOS,

0773 3 there are two types of disk drivess standard single-sided,

0774 3 single-density 8", and double-sided, double-density 5 1/4~

0775 3 diskettes.

0776 H

0777 3 The standard 8" diskettes do not need to use the blocking/

0778 3 deblocking code, but the § 1/4" drives do. Therefore an additional

0779 3 brte has been prefixed to the disk parameter block to

0780 y tell the disk drivers each logical disk’s physical

o781 y diskette type, and whether or not it needs deblocking.

0782 ;

0783 4

0784 3 Disk definition tables

0785 3

0786 3 These consist of disk parameter headers, with one entry

0787 3 Per logical disk driver, and disk parameter blocks, with

0788 t either one parameter block per logical disk or the same

o789 y parameter block for several logical disks.

0790 H

0791 5

0792 Disk$Parameters$Headers: sDescribed in Chapter 3

0793 H

0794 sLogical Disk A: (5 1/4" Diskette)

0798 F981 6BFB oW FloppySSkewtable 35 1/4" skew table

0796 F983 0000000000 DW 0,0,0 sReserved for CF/M

0797 F98%9 CIF9 DW Directorys$Buffer

0798 F98B A2FA DW FloppySParameters$Block

0799 F98D 41FA DW Disk$AsWorkarea

0800 F98F CIFA oW Disk$AsAllocation$Vector

0801 H

0802 sLogical Disk Bs (5 1/4" Disketta)

0803 F991 &BFB oW Floppy$5%Skewtable 3Shares same skew table as A:
Figure 6-4. (Continued)

170 The CP/M Programmer’s Handbook

0804 F993 0000000000 DW 0,0,0 sReserved for CP/M

0805 F999 CIF9 DW Directory$Buffer sShare same buffer as A:

08086 F99B 42FA DW Floppy$S¢Parameter$Block ;Same DFB as A:

0807 F99D BIFA DW DiskBSWarkarea ;Private work area

gggg F99F D7FA oW DiskBAllocationsVector 3;Private allocation vector
H

0810 sLogical Disk C: (8" Floppy)

0811 F9A1 B3FB DW Floppy$8%Skewtable 38" skew table

0812 FPA3 0000000000 DwW 0,0,0 sReserved for CP/M

0813 F9A? CIF9 DW Directorys$Buffer ;Share same buffer as A:

0814 F9AB S2FA W Floppy$8¢Parameter$Block

0813 FPAD AIFA DuW Disk$CsWorkarea sPrivate work area

gg:g F9AF EDFA DW DiskCAllocation$Vector sPrivate allocation vector
7

0818 ilogical Disk D: (8" Floppy)

0819 F9Bl &4BFB oW Floppy$StSkewtable 3Shares same skew table as A:

0820 F9B3 0000000000 oW 0.0,0 sReserved for CP/M

0821 F9BY CIF9 W Directorys$Buffer ;Share same buffer as A:

0822 F9BB SFA DW Floppy8Parameter$Block sSame DPB as C:

0823 F9BD BIFA oW DiskDWorkarea sPrivate work area

0824 F9BF OCFB DwW DiskDAllocationsVector 1Private allocation vector

0825

0824 H

0827 I3

o828 F9C1 Directory$Buffer: DS 128

o829 H

0830 ’

0832 i

0833 s Disk Types

0834 4

0835 0001 = Floppy$5 EQU 1 32 1/4" mini floppy

08346 0002 = Floppy$8 Equ 2 18" floppy (S5 SD)

0837 §

0833 3 Blocking/deblocking indicator

0839 l

0840 0080 = NeedsDeblaocking EQu 1000$0000R ;Sector size > 128 bytes

oea1 H

0842 4

0843 3 Disk parameter blocks

0844 H

0845 3 5 1/4" mini floppy

0844 3

0847 sExtra byte prefixed to indicate

0848 3 digsk type and blocking required

02849 FA4l 81 DB Floppy$5 + Needs$Deblocking

0850 FloppySParameters$Block:

0851 FA42 4800 DW 2 3128-byte sectors per track

0852 FA44 04 DB 4 :Block shift

0853 FA43 OF DB 15 3Block mask

0854 FA46 01 DB 1 sExtent mask

0855 FA47 AEQO DW 174 sMaximum allocation block number

0886 FA49 7F00 D 127 ;Number of directory entries -1

0857 FA4R CO DB 1100$0000B sBit map for reserving 1 alloc. block

0858 FA4C 00 DB 0000%0000B 5 for file directory

0859 FA4D 2000 DW 32 ;Disk changed work area size

0840 FA4F 0100 j] 1 3Number of tracks before directory

0841 H

0882 ;

0843 3 Standard 8" Floppy

0844 31Extra byte prefixed to DPR for

0865 ;3 this version of the BIOS

0886 FAS1 02 DB Floppy$g sIndicates disk type and the fact

0847 s that no deblocking is required

0848 Floppy$8¢Parameter$Block:

0849 FAS2 1A00 W & ;Sectors per track

Q870 FAS4 03 DB 3 3Block shift

0871 FASS 07 DB 7 sBlock mask

0872 FASé 00 DB [o] sExtent mask

0873 FA37 F200 oW 242 sMaximum allocation block number

0874 FAS39 3F00 DW 63 sNumber of directory entries - 1

0878 FASB CO DB 110080000B $Bit map for reserving 2 alloc. blocks

0876 FASC 00 DB 000030000k 3 for file directory

0877 FASD 1000 bW 16 sDisk changed work area size

0878 FASF 0200 W 2 sNumber of tracks before directory

0879 3

0880 H

Figure 6-4.

(Continued)

Chapter 6: The Basic Input/Output System

174

0881 3 Disk work areas
0832 H
0883 3 These are used by the BDOS to detect any unexpected
o884 3 change of diskettes. The BDOS will automatically set
088% 3 such a changed diskette to read-only status.
08848 3
0887 FAsL Disk$AsSWorkarea: ns 32 3 Az
0888 FA81 DiskBWorkarea: DS 32 s B:
0889 FAAL Disks$C#Workarea: DS 16 s Cs
0890 FAB1 DisksO$Workarea: ns 18 3 D:
0891 '
0892 i
0893 3 Disk allocation vectors
0894 L
0895 3 These are used by the BDOS to maintain a bit map of
0896 3 which allocation blocks are used and which are free.
0897 7 One byte is used for eight allocation blocks, hence the
0898 3 expression of the form (allocation blocks/8)+1.
0899 ¥
0900 FACH DisksAsAllocation$Vector DS (174/8)+1 3 A:
0901 FAD7 DiskBsAllocation$Vector DS {174/8)+1 s B:
0902 }
0903 FAED Disk$CsAllocation$Vector DS (242/8)+1 3 Cs
0904 FBOC DisksDs$Allocation$Vector DS (242/8)+1 s D:
0905 H
0906 3
0907 0004 = Number$ofslLogicalsDisks EQU 4
0908 H
0909 7
0910 SELDSK: sSelect disk in C
0911 3C = O for drive A, | for B, etc.
o912 jReturn the address of the appropriate
0913 3 disk parameter header in HL, or 0000H
0914 3 if the selected disk deoes not exist.
0915 H
0916 FB2B 210000 LX1 H, 0 tAsSsSUme an error
0917 FBR2E 79 MoV A,C yCheck if requested disk valid
0918 FB2F FEO4 CP1 Number$afslLogical$Disks
0919 FB31 DO RNC sReturn if > maximum number of disks
0920 3
0921 FB32 32EAFB STA Selected$Disk sSave selected disk number
o922 3Set up to return DPH address
0923 FB3IS 6F MOV L, A sMake disk into word value
0924 FB3& 2600 MVI H, 0
0925 sCompute of fset down disk parameter
0926 3 header table by multiplying by
0927 3 parameter header length (14 bytes)
0928 FB38 29 DAD H y %2
0929 FB39% 29 DAD H 3 %4
0930 FB3A 29 DAD H 3 =8
0931 FB3B 29 DAD H 3 %16
0932 FB3C 1181F9 LXt D,Disk$Parameter$Headers 3Get base address
0933 FB3F 19 DAD D sDE -> Appropriate DPH
0934 FB40O ES PUSH H sSave DPH address
0935 ;
0936 sAccess disk parameter block
0937 3 to extract special prefix byte that
0938 s identifies disk type and whether
093y 3 deblocking is required
0940 :
0941 FB4a1 110A00 LXI D, 10 sGet DPB pointer offset in DPH
0942 FB44 19 DAD D ;DE -> DPE address in DPH
0943 FBAS SE MOV E.M ;Get DPB address in DE
0944 FBA46 23 INX H
0945 FB47 56 MoV o.M
0946 FB48 EB XCHG ;DE -> DPB
0947 FB49 2B DCX H sDE ~> prefix byte
0948 FB4A 7E MOV AM sGet prefix byte
0949 FB4AB ESOF ANI OFH sIsolate disk type
0950 FBA4D 32FAFB STA Disk$Type ;Save for use in low-level driver
0951 FBSO 7E MoV y ;Get another copy of prefix byte
0952 FBS1 Eé80 ANI Need$Deblocking sIsolate deblocking flag
0953 FBS3 32F9FB STA Deblocking$Required sSave for use in low-level driver
09354 FB36 E1 POP H tRecover DPH pointer
0955 FB57 C% RET
0956 H
Figure 6-4. (Continued)

172 The CP/M Programmer’s Handbook

0957 H

0958 ;7 Set logical track for next read or write

0959 ¥

0950 SETTRK:

0961 FBS58 40 Mov H,B ;Selected track in BC on entry
0962 FBS9 &9 MOV L,C

0963 FBSA 22EBFB SHLD Selecteds$Track j;Save for low-level driver

0944 FBSD C9 RET

0945 H

0988 H

0967 3 Set logical sector for next read or write

0948 H

0969 3

o®70 SETSEC: sLogical sector in C on entry
0971 FBSE 79 MOV A,C

0972 FBSF 32EDFB STA Selected¥Sector ;Save for low-level driver

0973 FBé2 C9 RET

0974 H

097S ¥

o976 ¢ Set disk DMA (input/output) address for next read or write
0977 3

0978 FB4&3 0000 DMASAddress: DW o] sDMA address

o979 ¥

0980 SETDMA: ;Address in BC on entry

0981 FB&S &9 MOV L.C ;Move to HL to save

0982 FB&6 40 MOV H,B

0983 FB&7 2243FB SHLD DOMASAddress ;Save for low-level driver

0984 FB&A C9 RET

0985 H

Q986 H

0987 5 Translate logical sector number to physical

0988 l

0989 s Sector translation tables

0990 t These tables are indexed using the logical sector number,
0991 3+ and contain the corresponding physical sector number.
0992 3

0993 FloppySSkewtable: sEach physical sector contains four
0954 5 128-byte sectors.

0995 1 Physical 128b Logiral 126b Physical S12-byte
0996 FB&B 00010203 DB 00,01,02,03 100,01,02,03 (o]
0997 FB6F 10111213 DB 16,17,18,19 104,05, 06,07 4)
0998 FB73 20212223 DB 32,33,34,35 308,09,10,11 8)

0999 FB77 OCODOEOF DB 12,13, 14,15 112,13,14,15 3) Head
1000 FB7B 1CIDIEIF DB 28,29,30,31 $16,17,18,19 7) 0
1001 FB7F 080%0A0B DB 08,09,10,11 320,21,22,23 2)

1002 FBS3 18191A1B DB 24,25,26,27 i 24,25,26,27 &)
1003 FBB7 04050607 DB 04,05,06,07 328, 29, 30,31 1
1004 FBSB 14151617 OB 20,21,22,23 :32,33,34,35 S)
1005 H

1006 FB8F 24252627 DB 36,37, 38, 39 536,37, 38,39 0o 1
1007 FB93 34333437 DB 52,53, 54,55 340,41,42,43 4 1
1008 FB97 44454647 DR 68,69,70,71 384,45,46,47 8 1
1009 FBYB 30313233 bB 48, 49,50, 51 148, 49,50, 51 3 1 Head
1010 FBSF 40414243 DB 64, 65,686,467 152,53, 54,55 7 1 1
1011 FBA3 2C2D2E2F DB 44,43,44,47 156,57,58,59 2 1
1012 FBA7 3C3D3E3fF DB 60,61,62,63 $60,61,62,63 é6 1
1013 FBAB 28292A2B DB 40,41,42,43 164,65,66,67 1]
1014 FBAF 38393A3B DB 56,%57,58,59 168,69,70,71 5 3
1015 H

1016 3

1017 Floppy8Skewtable: ;Standard 8" Driver

1018] 01,02, 03, 04, 05, 06,07, 08,09, 10 Logical sectors
1019 FBB3 0107001319 DB 01,07,13,19,25%,05,11,17,23,03 3Physical sectors
1020 H

1021 3 11,12,13,14,15,16,17,18,19,20 Logical sectors
1022 FBBD 090F150208 DB 09,195, 21,02,08, 14,20, 26,06, 12 ;Physical sectors
1023 ;

1024 } 21, 22,23,24,25,26 Logical sectors

1025 FBC7 1218040A10 bB 18,24,04,10,16,22 3Physical sectors

1028

1027 3

1028 SECTRAN: sTranslate logical sector into physical
1029 30n entry, BC = logical sector number
1030 } DE ~> appropriate skew table
1031 ?

1032 son exit, HL = physical sector number

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 173

1033 FBCD ER XCHG 3HL —-> skew table base
1034 FBCE 0% DAD B 3Add on logical sector number
1035 FBCF &4E MOV L,M 3Get physical sector number
1038 FBDO 2600 MVI H, 0 sMake into a 16-bit value
1037 FBD2 C9 RET
1038 H
1039 H
1040 3
1041 HOME @ ;Home the selected leogical disk to track 0.
1042 ;Before doing this, a check must be made to see
1043 3 if the physical disk buffer has information
1043 3 that must be written out. This is indicated by
1045 t a flag, MustsWritesBuffer, set in the
1044 ; deblocking code,
1047 '
1048 FBD3 3AE9FER LDA MusteWritesBuffer sCheck if physical buffer must
1049 FBDé B7 ORA A 3 be written out to disk
1050 FBD7 C2DDFB JNZ HOMENoWrite
1051 FBDA 32E8FB STA DatasIn$Disk$Buffer iNo, so indicate that buffer
1052 3 is now unoccupied.
1053 HOMENoWrite:
1054 FBDD OE0O MVI c,0 sSet to track 0 (logically --
1055 FBDF CDS&FB CALL SETTRK s no actual disk operation occurs)
1056 FBE2 C9 RET
1057
1058 H
1059 3 Data written to or read from the mini-floppy drive is transferred
1040 3 via a physical buffer that is actually 512 bytes long (it was
1081 s declared at the front of the BIOS and holds the "ane-time"
}ggg s initialization code used for the cold boot procedure).
H
1064 3 The blocking/deblocking code attempts to minimize the amount
1045 + of actual disk I/0 by storing the disk, track, and physical sector
1066 3 currently residing in the Physical Buffer. If a read request is for
1067 3 a 128-byte CP/M "sector" that already is in the physical buffer,
1068 3 then no disk access occurs.
1069 H
1070 ¥
1071 0800 = Allocation®Block$Size EQU 2048
1072 0012 = PhysicalSecPers$Track EQU 18
1073 0004 = CPM$SecsPersPhysical EQU Physical$Sector$Size/128
1074 0048 = CPM$Secs$PersTrack Equ CPMSecPers$Physical®Physical$Sec$PersTrack
1075 0003 = Sectors$Mask EQu CPM$Sec$Pers$Physical-1
:076 0002 = SectorBitShift £qu 2 ; LOG2(CPM$SecsPerdPhysical)
077 3
1078 ;These are the values handed over by the BDOS
1079 3 when it calls the WRITE operation.
1080 3The allocated/unallocated indicates whether the
1081 + BDOS is set to write to an unallocated allocaticn
1082 3 block (it only indicates this for the first
1083 3 128-byte sector write) or to an allocation black
1084 3 that has already been allocated to a file.
1085 sThe BDOS also indicates if it is set to write to
1086 3 the file directory.
1087 H
1088 0000 = WritesAllocated EQu 0
1089 0001 = WritesDirectory EQU 1
1090 0002 = WritesUnallocated EQU 2
1091 3
1092 FBE3 00 WritesType: DB o] ;Contains the type of write
1093 3 indicated by the BDODS.
1094 $
1095 5
1096 IntBuffersDkeTrkeSec: sVariables for physical sector
1097 3 currently in Disk$Buffer in memcry
1098 FBE4 00 In$Buffer$Disk: ju:] 0 3 These are moved and compared
1099 FBES 0000 In$Buf fer$Track: oW o] } as a group, so do not alter
1100 FBE7 00 InsBuf fer$Sector: DB o] 3 these lines.
1104 5
1102 FBES 00 DatasIn$Disk$Buffer: DB o sWhen nonzero, the disk buffer has
1103 s data from the disk in it.
1104 FBE® 00 MustslritesBuffer: DB (o) sNonzero when data has been
1105 3 written into Disk$Buffer but
1106 3 not yet written out to disk
1107 5
1108 SelectedsDk$TrksSec: sVariables for selected disk, track, and sector

Figure 6-4. (Continued)

174

The CP/M Programmer’s Handbook

1109 ; (Selected by SELDSK, SETTRK, and SETSEC)
1110 FBEA 00 Selected3Disk: DB J : These are maved and
1111 FBEB 0000 Selected$Track: DW o] 3 compared as a group so
1112 FBED 00 Selected$Sector: DB (o] 3 do not alter arder.
1113
1114 FBEE 00 Selected$PhysicalsSector: DB [;Selected physical sector derived
1113 3 from selected (CP/M) sector by
1116 3 shifting it right the number of
1117 3 of bits specified by
1118 ;7 Sector$BiteShift
1119 3
1120 FBEF 00 Selected$Disks$Type: DB [s1Set by SELDSK to indicate either
1121 3 8" or 5 1/4" floppy
1122 FBFO 00 Selected$Disk$Deblock: DB 0 ;Set by SELDSK to indicate whether
1123 s deblocking is required.
1124
1125
1124 UnallocatedDkTrk$Sec: sParameters for writing to a previously
1127 3 unallocated allocation block.
1128 FBF1 00 Unallocateds$Disk: DB 0 3 These are moved and compared
1129 FBF2 0000 Unallocated$Track: DW Q 3 as a group so do not alter
1130 FBF4 00 Unallocated$Sector: DB] 3 these lines.
1131
1132 FBFS 00 Unallocated$Record$Count: DB L] sNumber of unallocated “"records™
1133 7 in current previously unallocated
1134 ;5 allocation block.
1135
1138 FBFé 00 Disk$Ervor$Flag: DB 0 sNonzero to indicate an error
1137 3 that could not be recovered
1138 5 by the disk drivers. BDOS will
1139 + output a "bad sector” message.
1140 H
1141 t1Flags used inside the deblocking code
1142
1143 FBF7 00 Must$PrereadsSector: DB Q sNonzero if a physical sector must
1144 + be read into the disk buffer
1145 5 either before a write to an
1144 3 allocated block can occur, or
1147 7 for a normal CP/M 128-byte
1148 ; sector read
1149 FRF8 00 Reads$Operation: DB 0 sNonzero when a CP/M 128-byte
1150 3 sector is to be read
1151 FBF? 00 Deblocking®Required: DB (o] iNonzero when the selected disk
1152 ;3 needs deblocking (set in SELDSK)
1153 FBFA 00 Disk&Type: DB [e] s Indicates 8" or S 1/4" floppy
1154 3 selected (set in SELDSKD).
1159 H
1156 H
1157 3 Read in the 128-byte CP/M sector specified by previous calls
1138 $+ to select disk and to set track and sector. The sector will be read
1159 3+ into the address specified in the previous call to set DMA address.
1160 H
1161 5 If reading from a disk drive using sectors larger than 128 bytes,
1162 3 deblocking code will be used to "unpack" a 128-byte sector fram
1143 3 the physical sector.
1144 READ:
1145 FBFR IAF9FR LbA Deblocking$Required sCheck if deblocking needed
11464 FBFE B7 ORA A s(flag was set in SELDSK call)
1167 FBFF CAS2FD JZ Read$NasDeblock 3No, use normal nondeblocked
1168
1149 3The deblocking algorithm used is such
1170 ¢+ that a read operation can be viewed
1171 5 up until the actual data transfer as
1172 3 though it was the first write to an
1173 3 unallocated allocation block.
1174 FCO2 AF XRA A ;Set the vecord count to O
1175 FCO3 32FSFB STA Unallocated$Record$Count 3 for first “write"
1176 FC04 3C INR A ;Indicate that it is really a read
1177 FCO7 3I2F8FB STA Read$Operation 3 that is to be performed
1178 FCOA 32F7FB STA Must$Prereads$Sector 3 and force a preread of the sector
1179 s to get it into the disk buffer
1180 FCOD 3E02 MVI A,WritetUnallocated ;Fake deblocking cade into responding
1181 FCOF R2E3FB STA WritesType + as if this is the first write to an
1182 7 wunallocated allocation block.
1183 FC12 C36EFC JMP Perform$ReadsWrite sUse common code to execute read

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System

175

1184 H
1185 5 Write a 128-byte sector from the current DMA address to
1186 3 the previocusly selected disk, track, and sector.
1187 H
1188 3 On arrival here, the BDOS will have set register C to indicate
1189 3 whether this write cperation is to an already allocated allocation
1190 + block (which means a preread of the sector may be needed),
1191 3 to the directory (in which case the data will be written to the
1192 3 disk immediately), or to the first 128-byte sector of a previously
1193 1 unallocated allocation block (in which case no preread is required).
1194 P
1195 3 Only writes to the directory take place immediately. In all other
1196 3 cases, the data will be moved from the DMA address into the disk
1197 s buffer, and only written out when circumstances force the
1198 3 transfer. The number of physical disk operations can therefore
1199 3 be reduced considerably.
1200 3
1201 WRITE:
1202 FC15 3AFSFR LDA Deblocking$Required sCheck if deblocking is required
1203 FCi8 B7 ORA A ;{flag set in SELDSK call)
1204 FC19 CA4ADFD Jz WritesNosDeblock
1205
1206 FCIC AF XRA A sIndicate that a write operation
1207 FC1D 32FSFB. STA Read$Operation ? is required (i.e. NOT a read)
1208 FC20 79 MoV A,C $Save the BDOS write type
1209 FC21 32E3FB STA WritesType
1210 FC24 FEO2 CPI WritesUnallocated 3;Check if the first write to an
1211 3 unallocated allocation block
1212 FC26 C237FC JNZ Check$UnallocatedsBlock 3;No, check if in the middle of
1212 t writing to an unallocated block
1214 sYes, first write to unallocated
1215 ;3 allocation block —- initialize
1218 3 variables associated with
1217 s unallocated writes.
1218 FC29 3E10 MVI A,Allocation$Block$Size/128 $Get number of 128-byte
1219 s sectors and
1220 FC2B 32FSFB 8TA Unallocated$Record$Count 3 set up a count,
1221 H
1222 FC2E 21EAFB LXI H,SelectedDkTrks$Sec ;Copy disk, track, and sector
1223 FC31 11FIFB LXI D,UnallocatedDkTrk$Sec ; into unallocated variables
1224 FC34 CD3SFD CALL MovesDkTrk$Sec
1225 H
1226 3 Check if this is not the first write to an unallocated
1227 3 allocation block —-- if it is, the unallocated record count
1228 3 has just been set to the number of 128-byte sectors in the
1229 3 allocation block.
1230 s
1231 Check$Unallacated$Elock:
1232 FC37 3AFSFB LD Unallocated$Records$Count
1233 FC3A B7 ORA A
1234 FC3B CASSFC Jz Request$Preread sNo, this is a write to an
1235 s+ allocated block
1236 sYes, this is a write to an
1237 + unallocated block
1238 FC3E 3D DCR A sCount down on number of 128-byte sectors
1239 5 left unwritten to in allocation block
1240 FC3F 32FS5FB STA Unallocated$Record$Count s and store back new value.
1241
1242 FCA2 21EAFB LXI H,SelectedDksTrkeSec sCheck if the selected disk, track,
1243 FCAS 11F{FB LXI D,Unallocated$DksTrk$Sec; and sector are the same as for
1244 FC48 CD29FD CALL ComparesDiTrk$Sec 3 those in the unallocated block.
1245 FCAB C264FC JINZ Request$Preread sNo, a preread is required
1246 ;Yes, no preread is needed.
1247 sNow is a convenient time to
1248 3 update the current sector and see
1249 3 if the track also needs updating.
1250 H
1251 3By design, ComparesDkTrkSec
1252 3 returns with
1253 3 DE -> Unallocated$Sector
1254 FC4E EB XCHG ;3 HL ~> Unallocated$Sector
1255 FC4F 34 INR “ sUpdate Unallocateds$Sector
1256 FC%0 7€ MOV AM 3Check if sector now > maximum
12%7 FCS1 FE4R CPI CPM$SecsPers$Track 3 on a track
1258 FCS3 DASFFC JC Nos$Track$Change tNo (A <'M)
1259 tYes,

Figure 6-4. (Continued)

176

The

CP/M Programmer’s Handbook

1260
1261
1242
1263
1264
12¢5
1266
12¢7
12¢8
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1219
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335

FCSé
FCS8

3400
2AF2FB

FCSR 23

FCSC

FCSF
FCs0
FCé3

FC&s
FC&7
FC&A
FC&B

FCSE
FC&F

FC72
FC735
FC76
FC77
FC79

FC7C
FC7F
FCgo

FC82
FC83

FC86
FC89
FCaC
FCSF

FC92
FC9S
FCo8
FCo9

Fcsc
FCOF
FCAO

FCAR

FCAS
FCA®

FCAA
FCAD
FCAE

22F2FR

AF
I2F7FB
C34EFC

AF
I2FSFBR
ac
32F7FB

AF
J2F&FB

3AEDFE
1F

iF
E&3F
32EEFB

21ESFB
7E
2401

B7
CAA3FC

11EAFB
21EAFB
CD24FD
C29CFC

SAE7FR
21EEFB
BE

CABIFC

JAESFR
B7
C49SFD

CDIIFD

3AF7FR
B7

CAPAFD
AF
32E5FB

MVI M. 0 sReset sector to O
LHLD Unallocated$Track ; Increase track by 1
INX
SHLD Unallocated$Track
No$TracksChange:
t Indicate to later code that
7 mno preread is needed.
XRA A
STA Must$Preread$Sector sMust$Preread$Sector=0
JMP Perform$Reads$Write
3
Request$Preread:
XRA A jIndicate that this is not a write
STA Unallocated$Record$Count 5 into an unallocated block.
INR A
STA Must$PrereadsSector i Indicate that a preread aof the
3 pPhysical sector is required.
H
Perform$Read®Write: jCommon code to execute both reads and
3 writes of 128-byte sectors.
XRA A sAssume that no disk errors will
STA Disk$Error$Flag 3 occur
LDA Selected$Sector sConvert selected 128-byte sector
RAR 7 into physical sector by dividing by 4
RAR
ANI 3FH sRemove any unwanted bits
STA Selected$Physical$Sector
LXI H,DatasIn$Disk$Buffer sCheck if disk buffer already has
MoV A M s data in it,
MVI M, 1 j(Unconditionally indicate that
3 the buffer now has data in it)
ORA A ;PDid it indeed have data in it?
Jz Read$Sector$into$Buffer ;No, proceed to read a physical
3 sector into the buffer.
;The buffer does have a physical sector
s in it.
;3 Note: The disk, track, and PHYSICAL
3 sector in the buffer need to be
3 checked, hence the use of the
3 CompareDkTrk subroutine.
:
LXI D, InsBufferDkTrk$Sec sCheck if sector in buffer is the
LX1 H,SelectedDkTrk$Sec s same as that selected earlier
CALL Compare$Dk&Trk sCompare ONLY disk and track
JINZ SectorNotInsBuffer sNo, it must be read in
LDA In$Buffer$Sector 3Get physical sector in buffer
LX1 H,Selected$Physical$Sector
cMP M sCheck if correct physical sector
Jz Sectors$InsBuffer sYes, it is already in memory

7
SectorNotInsBuffer:
3No, it will have to be read in
3 over current contents of buffer

LDA MustsWritesBuffer $1Check if buffer has data in that
ORA A 5 must be written out first
CNZ Write$Physical sYes, write it out

ReadsSectors$into$Buffer:
CALL Set$InsBuffereDk$TrkéSec ;Set in buffer variables from
selected disk, track, and sector
to reflect which sector is in the
buffer now

3
LDA Must$Preread$Sector ;In practice, the sector need only
ORA A 3 be physically read in if a preread
s is required
CNZ Read$Physical sYes, preread the sector
XRA A sReset the flag to reflect buffer
STA Must$Write$Buffer s contents.
SectorsInsBuffer: ;Selected sector on correct track and

Figure 6-4.

(Continued)

Chapter 6: The Basic Input/OQutput System

177

1336 + disk is already in the buffer.
1337 ;Convert the selected CP/M (128-byte)
1338 + sector into a relative address down
1339 3 the buffer.
1340 FCB1 3AEDFB LDA Selected#Sector ;Get selected sector number
1341 FCB4 E&S03 ANI Sectors$Mask sMask off only the least significant bits
1342 FCB6 6F MOV L,A 3Multiply by 128 by shifting 146-bit value
1343 FCB7 2600 Mv1 H, 0 3 left 7 bits
1344 FCBY 29 BAD H % 2
1343 FCBA 29 DAD H 3% 4
1346 FCBB 29 DAD H 1% 8
1347 FCBC 29 DAD H 1% 18
1348 FCBD 29 DAD H ;% 32
1349 FCBE 29 DAD H 1% 64
1330 FCBF 29 DAD H $% 128
1351 '
1352 FCCO 1133Fé LX1 D,Disk$Buffer ;Get base address of disk buffer
1353 FCC3 19 DAD D iAdd on sector number = 128
1354 tHL —-> 128-byte sector number start
1355 5 address in disk buffer
1356 FCC4 EB XCHG sDE ~> sector in disk buffer
1357 FCCS 2A63FB LHLD DMASAddress 3Get DMA address set in SETDMA call
1358 FCC8 EB XCHG tAssume a read operation, so
1359 s DE -> DMA address
1360 3 HL -> sector in disk buffer
1361 FCC9 OE10 MvI C,128/8 sBecause of the faster method used
1362 3 to move data in and out of the
1363 3 disk buffer, (eight bytes moved per
1364 s loop iteration) the count need only
1349 3 be 1/8th of normal.
1388 sAt this point -
1367] C = loop count
1348 H DE -> DMA address
1369 H HL ~> sector in disk buffer
1370 FCCB 3AFSFB LDA Read$Operation :Determine whether data is to be moved
1371 FCCE B7 ORA A 3 out of the buffer (read) or intc the
1372 FCCF C2D7FC JNZ BuffersMave ; buffer (write)
1373 sWriting into buffer
1374 ; (A must be O get here)
1375 FCD2 3C INR A 1Set flag to force a write
1376 FCD3 32E9FR STA MustsWritesBuffer 3 of the disk buffer later on.
1377 FCDé EB XCHG sMake DE -> sector in disk buffer
1378] HL -> DMA address
1379 H
1380 ¥
1381 BuffersMove: 3The folowing move loop moves eight bytes
1382 3 at a time from (HL) to (DE), C contains
1383 3 the loop count.
1384 FCD7 7€ MOV AM 3Get byte from source
1385 FCD8 12 STAX D sPut into destination
1386 FCD? 13 INX 1] sUpdate pointers
1387 FCDA 23 INX H
1388 FCDB 7E MoV AM sGet byte from source
1389 FCDC 12 STAX D 3sPut into destination
1390 FCDD 13 INX D sUpdate pointers
1391 FCDE 23 INX H
1392 FCDF 7& MoV AM sGat byte from source
1393 FCEO 12 STAX D sPut into destination
1394 FCE1l 13 INX o] sUpdate pointers
1395 FCE2 23 INX H
1396 FCE3 7€ MOV AM sGet byte from source
1397 FCE4 (2 STAX o] 3Put into destination
1398 FCES 13 INX D sUpdate pointers
1399 FCES$ 23 INX H
1400 FCE7 7E MoV AM ;Get byte from source
1401 FCES 12 STAX D sPut into destination
1402 FCE? 13 INX D tUpdate pointers
1403 FCEA 23 INX H
1404 FCEBR 7€ Mav AM 1Get byte from source
1405 FCEC 12 STAX D tPut into destination
1408 FCED 13 INX D ;Update pointers
1407 FCEE 23 INX H
1408 FCEF 7€ MOV AM ;Get byte from source
1409 FCFO 12 STAX o 3Put into destination
1410 FCF1 13 INX D sUpdate pointers
Figure 6-4. (Continued)

178

The CP/M Programmer’s Handbook

1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441

1442
1443
1444
1445
1444
1447
1448
1449
1450
1451

1452
1453
1454
1455
1454
1457
1458
1459
1440
1461

14482
1443
14464
1465
1466
1467
1468
1469
1470
1471

1472
1473
1474
1475
1476
1477
1478
1479
1480
1482
1483
1434
1485
1488
1487

FCF2
FCF3
FCF4
FCFS
FCF6

FCF7
FCF8

FCFB
FCFE
FDOO
FDoz

FDO4
FROS

FDO&
FDO7
FDOA
FDOD
FB10

FD11
FD14

F7
FD1A

FD1D
FD20

FD23

FD24
FD2&

Foz2y

FD2B
Fp2c
FD2D
FD2E
FD2F
FD30
FD31
FD32

FD35

FD37
FD38
FO3%
FD3A
FD3B
FD3C
FD3D

oD
C207FC

IAE3FR
FEO1L
JAF&FB
co

B7
co

AF
QA2ESFB
CD95FD
JAFSFB
ce

2AEAFR
32E4FB

2AEEFB
22ESFB

3AEEFR
32E7FB

ce

OEQ3
C3I2BFD

QEO4

1A
BE
co
13
23
oD
cs
C32BFD

c8
C337FD

gy e~

et$IndBuf fer$Dks$Trks$Sec:

INX H
MOV AM ;Get byte from scurce
8TAX D ;Put into destination
INX D sUpdate pointers
TNX H
DCR C ;Count down on loop counter
JINZ Buf fers$Move sRepeat until CP/M sector moved
H
LDA WritesType sIf write to directory, write ocut
CPI WritesDirectory ; buffer immediately
LDA Disk$Error$Flag ;Get error flag in case delayed write or read
RNZ sReturn if delayed write or read
H
ORA A sCheck if any disk errors have occurred
RNZ ;Yes, abandon attempt to write to directory
H
XRA A sClear flag that indicates buffer must be
STA MustsWritetBuffer s written out
CALL WritesPhysical ;Write buffer out to physical sector
LDA Disk$Error$Flag j;Return error flag to caller
RET

;Indicate selected disk, track, and
3 sector now residing in buffer
LDA SelectedsDisk

STA Ins$Buffer$Disk

LHLD Selected$Track
SHLD In$BuffersTrack

LDA Selected$Physical$Sector

STA In$Buffers$Sector

RET
CaompareDkTrk: ;Compares just the disk and track

3 pointed to by DE and HL

MVI c,3 sDisk (1), track (2

MP CompareDkTrkSecloop ;Use common code
ComparesDkTrkSec: sCompares the disk, track, and sector

CompareDkTrksSec$loop:

3 wvariables pointed to by DE and HL

MVI c.4 sDisk (1), track (2), and sector (1)

LDAX D ;Get comparitor
CMP M ;Caompare with comparand
RNZ ;Abandon comparison if inequality found
INX n sUpdate comparitor pointer
INX H sUpdate comparand pointer
DCR c 3;Count down on lcop count
RZ ;Return (with zero flag set)
MP CompareDkTrk$Secslaap
12
MoveDkTrk$Sec: sMoves the disk, track,and sector
s variables pointed at by HL to
3 those pointed at by DE
MVI C,4 shisk (1), track (2), and sector (1)
MovesDk$Trks$SecsLaop:
Mmav AM ;Get scurce byte
STAX D ;Store in destination
INX D sUpdate pointers
INX H
DCR c ;Count down on byte count
RZ 3Return if all bytes moved
JMP MovesDkTrkSecsLoop

There are two “"smart" disk controllers on this system, cne
for the 8" floppy diskette drives, and one for the S 1/4%
mini~diskette drives.

The controllers are “hard-wired" to monitor certain locatieons

Figure 6-4.

(Continued)

Chapter 6: The Basic Input/Output System

179

1488 3 in memory to detect when they are to perform some disk
1489 1 operation. The 8" controller monitors location 0040H, and
1490 5 the 5 1/4" controller monitors location 004SH. These are
1491 3 called their disk control bytes. If the most significant
1492 3 bit of a disk control byte is set, the controller will
1493 3 look at the word following the respective control bytes.
1494 3 This word must contain the address of a valid disk control
1493 3 table that specifies the exact disk operation to be performed.
1496 H
1497 3 Once the operation has been completed, the controller resets
1498 3 its disk control byte to OOH. This indicates completion
1499 3 to the disk driver code.
1500 H
1501 1 The controller also sets a return code in a disk status block --
1502 3 both controllers use the SAME location for this; 0043M.
1503 5 If the first byte of this status block is less than 80H, then
1504 3 a disk error has occurred. For this simple BIOS, no further details
1505 3 of the status settings are relevant. Note that the disk controller
1506 3 has built-in retry logic -~ reads and writes are attempted ten
1507 t times before the controller returns an error.
1508 H
1509 3 The disk control table layout is shown below. Note that the
1510 3 controllers have the capability for control tables to be
1511 3 chained together so that a sequence of disk operations can
1512 7 be initiated. In this BIOS this feature is not used. However,
1513 + the controller requires that the chain pointers in the
1514 3 disk control tables be pointed back to the main contrcl.bytes
1515 3 in order to indicate the end of the chain.
1516]
1517 0040 = DisksCeontrolss EQU 40H 38" control byte
1518 0041 = Command$Blocks8 EQU 41H sControl table pointer
1519)]
1520 0043 = DisksStatussBlock EQu 43H 38" AND T 1/4" status block
1521 ;
1522 0048 = Disk$ControlsS EQU 45H 35 1/4" control byte
1523 0046 = Command$Blocks$S EQU 456H ;Control table pointer
1524 H
1528 i
13526 3 Floppy Disk Control Tables
1527 3
1528 FD4O 00 Floppy$Command: oe (o] s Command
1529 0001 = Floppy$ReadsCode [{=IE} O1H
1530 0002 = Floppy$WritesCode EQU ozH
1531 FD41 00 Floppy$Unit: DE (o} ;Unit (drive) number = 0 or 1
1532 FD42 00 Floppy$Head: DB o] sHead number = 0 or 1
1533 FD43 00 Floppy$Track: DB [d] 1 Track number
1334 FD44 00 Floppy$Sector: DB o] 31Sector number
1333 FD4S 0000 Floppy$BytesCount: oW o sNumber of bytes to read/write
1534 FD47 0000 Floppy$DMASAddress: juY] 0 sTransfer address
1537 FD4%® 0000 Floppy$hNext$Status$Block: DW 0 sPointer to next status block
1538 1 if commands are chained.
1539 FD4B 0000 Floppy$NextsControl$iocation: DW 0 sPointer to next control byte
1540 5 if commands are chained.
1541 i
1542 H
1543]
1544 WritesNosDeblock: iWrite contents of disk buffer to
1545 3 correct sector.
1546 FDAD 3EO2 MVI A,Floppys$WritesCode ;Cet write function code
1547 FDAF C354FD JMP CommonNosDeblock 300 to common code
1548 ReadNosDeblock: sRead previously selected sector
1549 3 into disk buffer.
1550 FDS2 3E01 MVI A,Floppy$Read$Code 1Get read function code
1551 CommonNoDeblock:
1552 FDS4 3240FD STA Floppy$Command j;Set command function code
1553 1Set up nondeblocked command table
1554 FD57 218000 LXI H, 128 31Bytes per sector
1555 FDSA 2245FD SHLD Floppy$RBytesCount
1356 FDSD AF XRA A 18" floppy only has head 0
1557 FDSE 3242FD STA Floppy$Head
1558 '
1559 FD&1 3IAEAFR LDA SelectedsDisk 318" Floppy controller only has information
1540 3 on units O and 1 so Selected$Disk must
1561 3 be converted
1562 FDé4 E6OL ANI OtH sTurn into 0 or 1
15643 FD66 3241FD STA Floppy$Unit 1Set unit number
Figure 6-4. (Continued)

180 The CP/M Programmer’s Handbook
1564
1565 FD&9 3AEBFR LDA SelectedsTrack
1566 FD&C 3243FD STA Floppy$Track $1Set track number
1567 H
1568 FD&F 3AEDFR LDA Selecteds$Sector
1569 FD72 3244FD STA Floppy$Sector tSet sector number
1570 ;
1571 FD7S 2A43FB LHLD DMASAddress tTransfer directly between DMA address
1572 FD78 2247FD SHLD Floppy$DMASAddress sand 8" controller.
1573 H
1574 1 The disk controller can accept chained
1575 3 disk contral tables, but in this case,
1576 3 they are not used, so the "Next” pointers
1577 s must be pointed back at the initial
1578 3 control bytes in the base page.
1579 FD7B 214300 LXI H,Disk$Status$Block sPoint next status back at
1580 FD7€ 2245FD SHLD Floppy®Next$Status$Block ¥ main status block
1581 H
1582 FDe1 214000 LXI H,Disk$Controlss sPoint next control byte
1583 FD84 224BFD SMLD Floppy$NextsControlslLocation 3 back at main control byte
1584 ¥
1585 FD87 2140FD LXI H, Floppy$Command 3Point controller at control table
1586 FDBA 224100 SHLD Command$Block$3
1587 [
1888 FDSD 214000 LXI H,Disks$Controlss sActivate contrcoller to perform
1589 FDP0O 3480 MVI M, 80H ; operation.
1590 FD92 C3F7FD JMP Wait$ForsDisk$Complete
1591
1592 H
1593 ¥
1594
1595 Write$Physical: sWrite contents of disk buffer to
1596 3+ correct sector.
1597 FD95 3E02 MVI A,Floppy$WritesCade 1Get write function code
1598 FD9®7 C39CFD JMP Common$Physical ;Go to common code
1599 Read$Physical: sRead previously selected sector
1600 + into disk buffer.
1601 FD?A 3EO1 MVI A,Floppy$Read$Code t1Get read function code
14602 '
1603 Common$Physical:
1404 FD9C 3240FD STA Floppy$Command t1Set command table
1605
1604 H
1607 FDSF 3AFAFB LbA Disk$Type ;Get disk type (set in SELDSK)
1408 FDA2 FEOI CPI Floppy$S sConfirm it is a 5 1/4" Floppy
1409 FDA4 CAADFD Jz Correct$DisksType sYes
1610 FDA7 3EO1 Mv1 Al sNo, indicate disk error
1611 FDA9® 32F&FB STA Disk$Error$Flag
1612 FDAC C9 RET
1813 Correct$Disk$Type: ;Set up disk contrcl table
14614 ¥
1615 FDAD 3AEAFB LDA InsBuffer$Disk sConvert disk number to 0 or 1
1616 FDBO E&01 ANI 1 s for disk controller
1617 FDB2 3241FD sTA Floppy$Unit
1618
1619 FDBS 2AESFB LHLD In$BuffersTrack sSet up track number
1420 FDB8 7D MOV AL sNote: This is single byte value
1621 FDBY 3243FD STA Floppy$Track ;5 for the contraoller.
1822 B
1623 3 The sector must be converted into a
1424 3 head number and sector number.
1625 3 Sectors 0 - 8 are head 0, 9 ~ 17
1626 3 are head 1
1627 FDBC 04600 MVI B,0O sAssume head O
1428 FDBE 3AE7FB LDA InsBuf fer$Sector 31Get physical sector number
1629 FDC1 4F MoV C,A sSave copy in case it is head 0
1630 FDC2 FEO? CPI b4 sCheck if < 9
1631 FDC4 DACBFD JdC Head$Q jYes it is < @
1632 FOC7 DEO9 sut 9 3No, modify sector number back
1833 5 in the 0 - 8 range.
1634 FDC? 4F MOV C,A sPut sector in B
1635 FDCA 04 INR B 3Set to head 1
1636 Head$0:
1637 FBCB 78 MOV A B ;Set head number
1638 FDCC 3242FD STA Floppy$Head
14639 FBDCF 79 MOV A,C ;Set sector number

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 4184

1440 FDDO 3C INR A 3 (Physical sectors start at 1)
1641 FDD1 3244FD STA Floppy$Sector

1642 H

1643 FDDA 210002 LXI H,Physical$Sector$Size ;Set byte count

1844 FDD7 2245FD SHLD Floppy$BytesCount

1645 H

16446 FDDA 2133Fs LXI H,Disk$Buffer ;Set transfer address to be

1647 FDDD 2247FD SHLD Floppy$DMASAddress 3 disk buffer

1648 3

1849 $1As only one contral table is in
1850 1 use, close the status and busy
1651 3 chain pointers back to the
1652 3 main control bytes.

1633 FDEO 214300 Lxt H,Disk$Status$Block

1454 FDE3 2249FD SHLD Floppy$#Next$StatussBlock

1655 FDEé 214500 LxI H,Disk$ControlsS

1656 FDE9 224BFD SHLD Floppy$hNext$Controlslocation

1657

1658 FDEC 2140FD Lx1 H, Floppy$Command 3Set up command block pointer
1659 FDEF 224800 SHLLD Command$Blockss

1660

1461 FDF2 2143500 LX1 H,Disk$ControlsS sActivate S 1/4" disk controller
1662 FDFS 3480 MV M, 8OH

1663 3

16464 Wait$ForsDisksComplate: sWait until Disk Status Block indicates
1865 3 operation complete, then check
1866 s if any errors cccurred.

14587 ;On entry HL ~> disk control byte
1648 FDF7 7E MOV AM 3Get control byte

1669 FDF8 B7 ORA A

1670 FDF® C2F7FD JINZ Wait$ForsDisksComplete ;Operation still not yvet done
1671 H

1672 FDFC 3A4300 LDA Disk$Status$Block sComplete —- now check status
1673 FDFF FEB0O CP1 80H t€heck if any errors occurred
1674 FEO! DAOSFE Jc Disk$Error sYes

1675 FEO4 AF XRA A sNo

1676 FEOS 32F&FR STA Disk$ErrorsFlag sClear error flag

1677 FEO8 C9 RET

1678 Disk$Error:

1679 FEO9 3EOL MVI Al 3Set disk-error flag nonzero
1680 FEOB 32F4FB STA Disk$Errors$Flag

1481 FEOE C9% RET

1682 i

1683 3

1684 H

1485 3 Disk control table images for warm boot

1684 3

1487 Boot$Control$Partsl:

1688 FEOF 01 oe 1 sRead function

1889 FE10 00 DB Q 3Unit {drive) number

1490 FE11 00 DB o] sHead number

16491 FE12 00 DB Q ;i Track number

1692 FE13 02 DR 2 1Starting sector number

1493 FE14 0010 oW anS12 sNumber of bytes to read

1694 FE16 Q0EO oW CCP$Entry ;Read into this address

14695 FE18 4300 o DiskpStatus$Block tPointer to next status block
16946 FE1A 4500 oW DisksControlsS sPointer to next control table
1697 Boot$ControlsPart2: .

1498 FEIC 01 B 1 sRead function

1699 FEID 00 DB o] sUnit (drive) number

1700 FELIE 01 DB 1 tHeqd number

1701 FEIF 00 DB L] 3 Track number

1702 FE20 01 DB 1 sStarting sector number

1703 FE21 0008 W 3512 sNumber of bytes to read

1704 FE23 QOF0 W CCPS$Entry + (8%512) sRead into this address

1703 FE23 4300 o Disk$StatussBlock sPointer to next status block
1706 FE27 4%00 DW Disk$Control$d tPointer to next control table
1707

1708 H

1709 H

1710 H

1711 WBOOT: sWarm boot entry

1712 :0n warm boot, the CCP and BDOS must be reloaded
1713 5 into memory. In this BIOS, only the 5 1/4"
1714 ; diskettes will be used. Therefore this code

Figure 6-4. (Continued)

182 The CP/M Programmer’s Handbook

1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
17a2
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
17351
1752
1733
1754
1755
1756
1757
1756
1759
1760
1781
1762
1743
1764

FE29
FE2C
FE2F

FE32
FE35S

FE38

FE3B
FE3E

FE41

FE43
FE44
FE4S
FE4&
FE47
FEAS

FE4B
FEAE

FESO
FES1
FES2

FESS
FESS
FESA
FESD

FESE
FE&1
FE&4

FE&7

FES?Y

318000
110FFE
CD3BFE

111CFE
CD3BFE

C340F3

2140FD
2244600

OEOD

C243FE

214500
3680

7€
B7
C250FE

3A4300
FEBC
DASEFE
ce

2147FE
CD33F8
CI29FE

OD0AS76172 DB

: is hardware specific to the controiller.

Two

3 prefabricated control tables are used.

LXI SP, 80H
LXI D, Boot$Control$Parti sExecute first read of warm boot
cAaLL Warm$Boot $Read tLoad drive 0, track O,
i head 0, sectors 2 to &
LX1 D, Root$Control$Partz ;Execute second read
CALL Warm$Boot $Read sLoad drive 0, track 0,
+ head 1, sectors 1 - 3
JMP EntersCPM :5et up base page and enter CCF
Warm$Boot $Read: s0n entry, DE -> control table image
sThis control table is moved into
;7 the main disk control table and
; then the controller activated.
LXI H,Floppy$Command sHL -> actual control table
SHLD Command$BlocksS ;Tell the controller its address
sMove the control table image
3 into the contreol table itself
MVI C,13 ;Set byte count
Warm$Boot$Move s
LDAX D sGet image byte
MOy M, A sStore into actual control table
INX H ;Update pointers
INX D
DCR C sCount down on byte count
JINZ Warm$Boot $Mave sContinue until all bytes moved
LXI H,Disk$Controlss jActivate contraller
MVI 80H
WaitsForsBoot$Complete:
MoV AM ;Get status byte
ORA A sCheck if complete
uNZ WaitsFor$RootsComplete ;No
;Yes, check for errors
LDA Disk$Statuss$Block
CPI 80H
JdC Warm$Boot$Ervror ;Yes, an error occurréad
RET
Warm&Boot$Error:
LXI H,Warm$Boot$Error$Message
CALL Display$Message
uMP WBOQT sRestart warm boot

Warm$Boot$Error$Message:

END

30f simple BIOS listing

CR,LF, “Warm Boot Error -~ retrying...”,CR,LF,0

Figure 6-4.

(Continued)

The Major Steps

Building Your First System

Using SYSGEN to Write
CP/M to Disk

Using DDT to Build the
CP/M Memory Image

The CP/M Bootstrap Loader

Using MOVCPM to Relocate the
CCP and BDOS

Putting It All Together

Building a New
CP/M System

This chapter describes how to build a version of CP/M with your own BIOS
built into it. It also shows you how to put CP/M onto a floppy disk and how to
write a bootstrap loader to bring CP/M into memory.

The manufacturer of your computer system plays a significant role in building
a new CP/M system. Several of CP/M’ utility programs may be modified by
manufacturers to adapt them to individual computer systems. Unfortunately, not
all manufacturers customize these programs. You should therefore invest some
time in studying the documentation provided with your system to see what and
how much customizing may have already been done. You should also assemble
and print out listings of all assembly language source files from your CP/M release
diskette.

It is impossible to predict the details of customization and special procedures
that the manufacturer may have installed on your particular system. Therefore,
this chapter describes first the overall mechanism of building a CP/M system, and

183

184 The CP/M Programmer’s Handbook

second the details of building a CP/M system around the example BIOS shown in
the previous chapter as Figure 6-4.

The Major Steps

Building a new CP/M system consists of the following major steps:

+ Create a new or modified BIOS with the appropriate device drivers in it.
Assembile this so that it will execute at the top end of memory (by using an
origin statement (ORG) to set the location counter).

» Create new versions of the CCP and BDOS with all addresses in the
instructions changed so that they will be correctly located in memory just
below the new BIOS. Digital Research provides a special utility called
MOVCPM to do this.

+ Create or modify a CP/M bootstrap loader that will be loaded by the
firmware that executes when you first switch on your computer (or press the
RESET button). Normally, the CP/M bootstrap loader executes in the low-
address end of memory. The exact address and the details of any hardware
initialization that it must perform will depend entirely on your particular
computer system.

+ Using Digital Research standard utility programs, bring the bootstrap loader,
the CCP and BDOS, and the BIOS together in the low part of memory. Then
write this new version of CP/M onto a disk in the appropriate places. Again,
depending on the design of your computer system, you may be able to use the
standard utility program, SYSGEN, to write the entire CP/M image onto
disk. Otherwise you may have to write a special program to do this.

When CP/M is already running on your computer system and you want to add
new features to the BIOS, all you need to do is change the BIOS and rebuild the
system. The CCP and BDOS will need to be moved down in memory if the changes
expand the BIOS significantly. If this happens, you will have to make minor
changes in the bootstrap loader so that it reads the new CP/M image into memory
at a lower address and transfers control to the correct location (the first instruction
of the BIOS jump vector).

Building Your First System

The first time that you build CP/M, it is a good idea to make no changes to the
BIOS at all. Simply reassemble the BIOS source code and proceed with the system
build. Then, if the new system does not run, you know that it must be somethingin
the procedure you used rather than any new features or modification to the BIOS

Chapter 7: Building a New CP/M System 185

source code. Changes in the BIOS could easily obscure any problems you have
with the build procedure itself.

The Ingredients

To build CP/M, you will need the following files and utility programs:

- The assembly language source code for your BIOS. Check your CP/M
release diskette for a file with a name like CBIOS.ASM (Customized Basic
Input/Output System). Some manufacturers do not supply you with the
source code for their BIOS; it may be sold separately or not released at all. If
you cannot get hold of the source code, the only way that you can add new
features to the BIOS is by writing the entire BIOS from scratch.

- The source code for the CP/M bootstrap loader. This too may be on the
release diskette or available separately from your computer’s manufacturer.

+ The Digital Research assembler, which converts source code into machine
language in hexadecimal form. This program, called ASM.COM, will be on
your CP/M release diskette. Equivalent assemblers, such as Digital Research’s
macro-assemblers MAC and RMAC or Microsoft’s M80, can also be used.

- The Digital Research utility called MOVCPM, which prepares a memory
image of the CCP and BDOS with all addresses adjusted to the right values.

- The Digital Research debugging utility, called DDT (Dynamic Debugging
Tool), or the more enhanced version for the Z80 CPU chip, ZSID (Z80
Symbolic Interactive Debugger). DDT is used to read in the various pro-
gram files and piece together a memory image of the CP/M system.

- The Digital Research utility program SYSGEN. This writes the composite
memory image of the bootstrap, CCP, BDOS, and BIOS onto the disk.
SYSGEN was designed to work on floppy disk systems. If your computer
uses a hard disk, you may have a program with a name like PUTCPM or
WRITECPM that performs the same function.

The Ultimate Goal

In Figure 6-4, lines 0044 to 0065, you can see the equates that define the base
addresses for the CCP, the BDOS, and the BIOS. Figure 7-1 shows how the top of
memory will look when this version of CP/M has been loaded into memory.

Life would be simple if you could build this image in memory at the addresses
shown and write the image out to disk. Building this image, however, would
probably overwrite the version of CP/M that you were operating since it too lives
at the top of memory. Therefore, the goal is to create a replica of this image lower
down in memory, but with all the instruction addresses set to execute at the
addresses shown in Figure 7-1.

486 The CP/M Programmer’s Handbook

- OFFFFH (Top of 64K RAM)
BIOS
OF400H
BDOS
OECO00H
CcCP
OE400H

Figure 7-1. Memory layout of CP/M

Using SYSGEN to Write CP/M to Disk

The SYSGEN utility writes a memory image onto a specified logical disk. It
can use a memory image that you arrange to be in memory before you invoke
SYSGEN, or you can direct SYSGEN to read in a disk file that contains the image.
You can also use SYSGEN to transport an existing CP/M system from one diskette
to another by directing it to load the CP/M image from one diskette into memory
and then to write that image out to another diskette.

Check the documentation supplied by your computer’s manufacturer to make
sure that you can use SYSGEN on your system. SYSGEN, as released by Digital
Research, is constructed to run on 8-inch, single-sided, single-density diskettes. If
your system does not use these standard diskettes, SYSGEN must be customized
to your disk system.

When SYSGEN loads a CP/M image into memory, it will place the bootstrap,
CCP, BDOS, and BIOS at the predetermined addresses shown in Figure 7-2,
regardless of where this CP/M originated.

Chapter 7: Building a New CP/M System 187

- OFFFFH (Top of 64K RAM)
Currently
executing
version
of CP/M
2 0E400H (approximate)
e v
BIOS = 2304 (900H) bytes
(this will vary from
- 2880H version to version)
BIOS
- IF80H BDOS = 3584 (OE00H) bytes
BDOS CCP = 2048 (800H) bytes
- HEOH Bootst 128 (80H) byt
ootstrap = es
CcCp Y
- 0980H
Bootstrap
~g————— 0900H
SYSGEN = xxx (xxxH) bytes
SYSGEN
- 0100H
- 0000H

Figure 7-2. SYSGEN’s memory layout

188 The CP/M Programmer’s Handbook

You can see that the relative arrangement between the components has not
changed; the whole image has simply been moved down in memory well below the
currently executing version of CP/M. The bootstrap has been added to the picture
just beneath the CCP.

The SYSGEN utility writes this image onto a floppy diskette starting at sector
1 of track 0 and continuing to sector 26 on track 1. Refer back to Figure 2-2 to see
the layout of CP/M on a standard 8-inch, single-sided, single-density diskette.

If you request SYSGEN to read the memory image from a file (which you do by
calling SYSGEN with the file name on the same line as the SYSGEN call), then
SYSGEN presumes that you have previously created the correct memory image
and saved it (with the SAVE command). SYSGEN then skips over the first 16
sectors of the file so as to avoid overwriting itself.

Here is an example of how to use SYSGEN to move the CP/M image from one
diskette to another:

A>SYSGENCCR>

SYSGEN VER 2.0

SOURCE DRIVE NAME (OR RETURN TO SKIP) A

SOURCE ON A:, THEN TYPE RETURN <cr>

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) B
DESTINATION ON B: THEN TYPE RETURN Lcry

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) <cr>
Ax

As you can see, SYSGEN gives you the choice of specifying the source drive
name or typing CARRIAGE RETURN. If you enter a CARRIAGE RETURN, SYSGEN
assumes that the CP/M image is already in memory. Note that you need to call up
SYSGEN only once to write out the same CP/M image to more than one disk.

A larger than standard BIOS can cause difficulties in using SYSGEN. The
standard SYSGEN format only allows for six 128-byte sectors to contain the
BIOS, so if your BIOS is larger than 768 (300H) bytes, it will be a problem. The
CP/M image will not fit on the first two tracks of a standard 8-inch diskette.

Nowadays it is rare to find an 8-inch floppy diskette system where you must
load CP/M from a single-sided, single-density diskette. Most systems now use
double-sided or double-density diskettes as the normal format, but can switch to
single-sided, single-density diskettes to interchange information with other com-
puter systems.

Because there is no “standard” format for 8-inch, double-sided and double-
density diskettes, you probably won’t be able to read diskettes written on systems
of adifferent make or model. Therefore, you need only be concerned about usinga
disk layout that will keep your disks compatible with other machines that are
exactly the same as yours.

This is also true if you have 5 1/4-inch diskettes. There is no industry standard
for these either, so your main consideration is to place the file directory in the same

Chapter 7: Building a New CP/M System 189

place as it will be on diskettes written by other users of your model of computer.
You must also be sure to use the same sector skewing. Otherwise, you will get a
garbled version whenever you try to read files originating on other systems.

With the higher capacity diskettes, you can reserve more space to hold the
CP/M image on the diskette. For example, in the case of the BIOS shown in Figure
6-4, the CP/M image is written to a 5 1/4-inch, double-sided, double-density
diskette using 512-byte sectors. Figure 7-3 shows the layout of this diskette. Note
that the bootstrap loader is placed in a 512-byte sector all by itself. Doing so makes
the bootstrap code and warm boot code in the BIOS much simpler.

The memory image must be altered to reflect the fact that the bootstrap now
occupies an entire 512-byte sector. Rather than change all of the addresses, the
bootstrap is loaded into memory 384 (180H) bytes lower, so that it ends at the same
address as before. Figure 7-4 shows the revised memory image.

Writing a PUTCPM Utility

Because the example system uses 5 1/4-inch floppy diskettes with 512-byte
sectors, the standard version of SYSGEN cannot be used to write the CP/M image
onto a diskette. You will have to use a functional replacement provided by your
computer’s manufacturer or develop a small utility program to do the job.

Track 0 Sector
Head 1 2 3 4 5 6 7 8 9
0 Boot CCP BDOS
1 BDOS BIOS
10 i1 12 13 14 15 16 17 18
Sector
Track 1 Sector
1 2 3 4 5 6 7 8 9
Head
File Directory Allocation Blocks
0

Figure 7-3.

Disk layout for example BIOS on 5 1/4-inch diskettes

190 The CP/M Programmer’s Handbook

Currently
executing
version
of CPM |<¢———

JL
148

)1
[4 8

- 2880H
BIOS

-¢—— 1F80H
BDOS

- 1180H
CCP

-t 0980H

Bootstrap
- 0780H

— OFFFFH (Top of 64K RAM)

-— 0E400H (approximate)

BIOS = 2304 (900H) bytes
(this will vary from
version to version)

BDOS = 3584 (OEOOH) bytes

CCP = 2048 (800H) bytes

Bootstrap = 512 (200H) bytes

Figure 7-4.

Addresses for example BIOS image

Figure 7-5 shows an example of such a program. It is written in a general-
purpose way, so that you may be able to use it for your system by changing the
equates at the front of the program to reflect the specifics of your disk drives.

Note that there are two problems to be solved. First, the area of the disk on
which the CP/M image resides cannot be accessed by the BDOS, as it is outside the
file system area on the disk. Second, it is rare to write the CP/M image onto the
disk with any kind of sector skewing; to do so would slow down the loading
process. In any case, skewing would be redundant, since the loader is doing no
processing other than reading the disk and can therefore read the disk without

skewing.

Chapter 7: Building a New CP/M System

191

.. e

This program writes out the CP/M cold boot lcader,
CCP, BDOS, and BIDOS to a floppy diskette. It vuns
under CP/M as a normal transient program.

3130 = Version EQU ‘017 sEquates used in the sign-on
; message
3730 = Month EQU “Q7~
2932 = Day EQU 247
3238 = Year EQU 82
' The actual PUTCPMFS.COM program consists of this code,
H Pplus the BOOTFS.HEX, CCP, BDOS, and BIOS.
3 wWhen this program executes, the memory image should
? look like this:
; Component Base Address
H BIOS 1F80H
H BDOS 1180H
H ccp 0980H
3 BOQTFS 0780H
H The components are produced as follows:
3 BIOS.HEX By assembling source code
3 BROS) From a CPMnn.COM file output
H ccr) by MOVCPM and SAVEd on disk
? BOOTFS.HEX By assembling source code
;
[The components are pieced together using DDT with the
3 following commands:
3
H DDT CPMnn.COM
H IPUTCPMFS.HEX
3 R (Reads in this program)
H IBOOTFS.HEX
H 680 (Reads in BOOT at 0780H)
i IBIOS.HEX
H R2980 (Reads in BIOS at 1F80H)
H GO (Exit from DDT)
3 SAVE 40 PUTCPMFS.COM (Create final .COM file)
H The actual layout of the diskette is as follows:
3 Track O Sector
4 1 2 3 4 S & 7 8 @
3 Head + + +
s O H
H +
3 1 {
H
¥
H
H Equates for defining memory size and the base address and
3 length of the system components
0040 = hemorySSize EQU &4 sNumber of Kbytes of RAM
4
H The BIOS Lenath must match that declared in the BRIOS.
0900 = BRIOSSLength EQU QP00H
0200 = BootsLength EQU S12
0800 = CCPsLength EQU 0800H jConstant
QEQQ = BDOSsSLength EQU OEOOH sConstant
4
1FQ0 = Length$InsBytes EQU CCPsLenath + BDOSsLength + BIOSslLength
0780 = Start$Image EQU $80H - Boots$lLength sAddress of CP/M image
2100 = Length$Image EQU LengthsIns$Bytes + Boots$lLength

Figure 7-5.

Example PUTCPM

192 The CP/M Programmer’s Handbook

Disk characteristics

These equates describe the physical characteristics of
the floppy diskette so that the program cam move from
one sector to the next, updating the track and resetting
the sector when necessary.

TIR IR

FirstsSectorsonsTrack EQU 1

Q001 =
0012 = Last$Sectorson$Track EQU 18
Q09 = Last$Sectors$onsHeads$o EQU ?
0200 = SectorsSize EQU 512
3
H Controller characteristics
4
H On this computer system, the floppy disk controller can write
3 multiple sectors in a single command. However, in order
3 to produce a more general example it is shown only reading cone
3 sectar at a time.
000t = SectorsPeririte EQU 1
; Cold boot characteristics
Q000 = étar\STrack EQu o] sInitial values for CP/M image
0001 = Start$Sector EQU 1 =" =
0011 = SectorssTosWrite EQU (Length$Image + Sector$Size - 1) / Sector$Size
H
4 R
Q009 = BS$PRINTS EQu ? tPrint string terminated by $
0005 = BDOS EQU s sBDOS entry point
1
‘0100 ORG 100H
Put$CPM:
0100 C33F01 JMP Mains$Code tEnter main code body
jFor reasons of clarity, the main
i data strucrtures are shown before the
;7 executable code.
000D = CR EQU ODH jCarriage return
000A = LF EQU OAH sLine feed
Signon$Message:
0103 ODOAS07574 DB CR,LF, “Put CP/M on Diskette”
0119 ODOA DB CR,LF
011B S566572736% DE ‘Version ~
0123 3031 DuW Version
0125 20 DB .
0124 3037 bW Month
0128 2F DB A
0129 3234 Dw Day
012B 2F DB a4
012C 3832 DW Year
O12E 0ODOAZ24 DB CR,LF, "%~
3 Disk control tables
0045 = DisksControl$s EQU 45H 5 1/4" control byte
00448 = Command$BlocksS EQU 46&H ;Control table pointer
Q043 = Disk$Status EQU 43H ;Completion status
B
H
H The command table track and DMA$Address can also be used
1 as working storage and updated as the load process
H continues. The sector in the command table cannot be
H used directly as the disk controller requires it to be
3 the sector number on the specified head~ (1 —- 9) rather
F than the sector number on track. Hence a separate variable
[must be used.
Figure 7-5. (Continued)

Chapter 7: Building a New CP/M System

193

0131 01 Sector: DB Starts$Sector
0132 02 Command$Table: DB O2H sCommand —— Write
0133 00 Unit: DB] sUnit (drive) number = 0 or 1
0134 00 Head: DB (o] sHead number = 0 or 1
0135 00 Track: DB StartsTrack ;Used as working variable
0136 00 Sectortonshead: DB o] sConverted by low-level driver
0137 0002 Byte$Count: DW Sector$Size * Sectors$PersWrite
0139 8007 DMASAddress: oW StartsImage
013B 4300 NextsStatus: oW Disk$Status sPointer to next status block
3 if commands are chained
0130 4500 NextsControl: ow Disk$Control$S :Pointer to next control byte
3 if commands are chained
Mains$Code:
013F 310001 LXt SP, Put $CPM 1Stack grows down below code
0142 110301 LXI D,SignonSMessage 3Sign on
0145 OEO9® MVI C, BSPRINTS sPrint string until ¢
0147 CDOS00 CALL
014A 213201 [34 H, CommandsTable 31Point the disk controller at
014D 224600 SHLD Command$Block$S 3 the command block
0150 OEt1 MVI C,SectorssTosWrite sSet sector count
Writesioop:
0152 Cbh7C01 CALL PutsCPMSWrite sWrite data onto diskette
0155 oD DCR c sDowndate sector count
0136 CA0000 Jz o sWarm boot
0159 213t01 LX1 H, Sector ;Update sector number
015C 3E0L MV1 A, SectorssPers$irite 3 by adding on number of sectors
O1SE 86 ADD M 3 by controller
O1ISF 77 MOV M. A sSave result
0140 3E13 MVI A,LastsSectorsOns$Track + 1 sCheck if at end of track
0142 BE cMP]
0143 C24FO01 JNZ NotEndTrack
0168 3801 MV1 M.First$SectorsOnsTrack ;Yes, reset to beginning
0148 243501 LHLD Track sUpdate track number
016B 23 INX H
0146C 223301 SHLD Track
NotsEnd$Track:
014F 2A3901 LHLD DMASAddress jUpdate DMA address
0172 110002 Lx1 D,SectorsSize * Sectors$PersWrite
0175 19 DAD D
0176 223%01 SHLD DMA$Address
0179 C3s201 JMP WritesLoop sWrite next block
Put SCPM$Write: sAt this point, the description of the
3 opPeration required is in the variables
; contained in the command table, along
? with the sector variable.
017C CS PUSH B ;Save sector count in C
o Change this voutine to match the disk controller in use ————--
017D 0400 MVL B,0 sAssume head O
017F 3A31014 LDA Sector 31Get requested sector
0182 4F MOV ’ ;Take a copy of it
0183 FEOA CPI Last$Sectorson$Heads$0+1 ;Check if on head
0185 DABCO1 Jc Heads$Q 3 No
0188 DSOY SUT Lasts$Sectorson$Headso 3Bias down for head 1
018A 4F MoV C.A ;Save copy
0O18B 04 INR B ;Set head 1
Head$0:
018C 78 MoV A B sGet head
018D 323401 STA Head
0190 79 MOV A,C ;Get sector
0191 323401 STA Sectors$OnsHead
Figure 7-5. (Continued)

194 The CP/M Programmer’s Handbook

O10B

§ End of physical write routine

PutCPMError$Message:
CR,LF, “Ervor in writing CP/M -~ retrying... ,CR,LF, %~

01B3 ODOAAS7272

END

PutsCPM

0194 214500 Lxt H,Disk$ControlsS jActivate controller
0197 3680 MYT M, 80H
WaitForBoot$Complete:
0199 7E oV AM sGet status byte
019A B7 ORA A sCheck if complete
019B C29901 JINZ WaitsForBoot$Complete ;No
sYes, check for errars
019E 2A4300 LDA Disk$Status
01A1 FESO CPI 80H
01A3 DAASO1L JC Put CPMEvrror sYes, an error occurred

01As6 C1 POP B ;Recover sector count in C
01A7 C9 RET

PutCPMErvror:
01A8 11B301 LX1I D, PutCPMErrorsMessage
01AB OEO? nvI C,B$FRINTS tPrint string until $
01AD CDOS00 CALL BDOS :Output error message
01BO C33FO1 JMP Mains$Code sRestart the loader

Figure 7-5. (Continued)

Using DDT to Build the CP/M Memory Image

DDT, the Digital Research debug program, is used to read files of type
“.COM”and “.HEX” into memory. Understanding the internal structure of these
file types is important, both to understand what DDT can do and to understand
how the MOVCPM utility can effectively change a machine code file so that it can
be executed at a new address in memory.

“.COM?” File Structure

A COM file is a memory image. It is a replica of the bit patterns that are to be
created when the file is loaded into memory. COM files are normally designed to
load at location 100H upwards. No internal structure to the file requires this,
however, so if you know what the contents of a COM file are, there is nothing to
preclude you from loading it into memory starting at some address other than
100H.

As you may recall from the description of the CCP in Chapter 4, the SAVE
command built into the CCP allows you to create a COM file by specifying the
number of 256-byte “pages” of memory and the name of the file. The CCP will
write out an exact image of memory from location 100H up.

Chapter 7: Building a New CP/M System 195

“.HEX” File Structure

HEX files are output by the assembler. They contain an ASCII character
representation of hexadecimal values. For example, the contents of a single byte of
memory with the binary value 10101111 would be represented by two ASCII
characters, A F, in a HEX file.

The HEX file has a higher level structure than just a series of ASCII charac-
ters however. Each line of ASCII characters is terminated by CARRIAGE
RETURN/ LINE FEED. The overall structure is shown in Figure 7-6.

The most important aspect of a HEX file is that each line contains the address
at which the data bytes are loaded. Each line is processed independently, so the
load addresses of succeeding lines need not be in order.

DDT canread ina HEX file at an address different from the address where the
code must be in order to execute. For example, you can read inthe HEX file of the
BIOS at the correct place for the memory image (shown in Figure 7-4). There are
two ways of using DDT to read ina COM or HEX file. You can specify the name of
the file on the same command line with DDT. For example:

A>DDT B:XYZ.HEX<or> <- Call up DDT with file name

DDT VERS 2.0 <— DDT signs aon

NEXT PC

0180 0100 €= ... and displays next free byte

and entry point address
<~ ... and prompts for a commmand

The advantage of this method of loading a file is that you can specify which
logical disk is to be searched for the file. The second way of using DDT is to load
DDT first, and then, when it has given its prompt, specify the file name and request
that DDT load it like this:

-Ifilename.typ<cr> <~ Enter the file name and type
-R<er> <—- Read in the file

The “I” command initializes the default file control block in the base page (at
location 00SCH) with the file name and type; it does not set up the logical disk. If
you need to do this, you must set the first byte of the default FCB manually like

this:

~-Ifilename,typ<cr> 4— Specify file name
~-8SCLer> <— "S"et location SC

QOSC 00 Q2<cr> {~ Was 00, you enter 02<cr>
005D 41 ,<cr> <~ Enter "." to terminate
-R<er> <~ Read in the file

Location 005CH should be set to 01H for Drive A, 02H for B, and so on.
The “R” command will read in HEX files to the execution addresses specified
in each line of the HEX file, so be careful—if you forget to put an ORG (origin)

196 The CP/M Programmer’s Handbook

} 4

: 04 0158 00 44 00 01 80 BE

———— —

T7Check sum formed by adding up all of the values 04, 01, 58, 00,
64,00, 01 and 80 and then subtracting their sum from 00H

Data bytes to be loaded at the specified address

Record (line) type, normally 00

Load address for the data bytes on this line

Number of data bytes on this line (ASM uses 10H bytes)

Note: HEX files do not have embedded blank characters; the example above is shown with
gaps between individual fields only for clarity.

Beginning of line marker (colon)

Figure 7-6.

Example line from HEX file

statement at the front of the assembly language source code, reading in the
resultant HEX file will overwrite location 0000H on up, destroying the contents of
the base page. Similarly, if you were trying to read in the HEX file for a BIOS,
there is an excellent chance that you will overwrite the currently executing CP/M
system.

DDT reacts to the file type you enter as part of the file name. For file types
other than .HEX, DDT loads the file starting at location 0100H on up.

The “R” command can also be used to read files into memory at different
addresses. You do this by typing a hexadecimal number immediately after the R,
with no intervening punctuation. For HEX files, the number that you enter is
added to the address in each line of the HEX file and the sum is used as the address
into which the data bytes are loaded. The data bytes themselves are not changed,
just the load address.

For COM files, the number that you enter is added to 0100H and the sum is
used as the starting address for loading the file.

The sum is performed as 16-bit, unsigned arithmetic with any carry ignored, so
you can load a BIOS HEX file into low memory by using the “R” command with
what is called an “offset value.”

If a HEX file has been assembled to execute at address “exec,”and you need to
use DDT to read in this file to address “load,” you need to solve the following
equation:

offset = load — exec.

DDT’s “H” command performs hexadecimal arithmetic. It calculates and
displays the sum of and difference between two hexadecimal values. For example,

Chapter 7: Building a New CP/M System 197

the BIOS in Figure 6-4 has been assembled to execute at location 0F600H, but
needs to be loaded into memory at location 1F80H. Here is how to compute the
correct offset for the “R” command:

~HiF8Q, F&00<ecr> {~ Use the H cammand
1580, 2980 {- Sum, difference

Thus, to read in the BIOS HEX file called FIG6-4. HEX at location 1F80H,
you would enter the following commands to DDT:

-IF1Gé-4.HEX<“cr> {- Specify file name and type
-R2980<cr> <= Load at OF&00H + 2980H (= I1F&0H)

In this way, using DDT, you can read in the HEX files for both the BIOS and
the bootstrap loader.

The CP/M Bootstrap Loader

The bootstrap loader is brought into memory by PROM-based firmware in
the computer system. It loads in the CCP, BDOS, and BIOS and then transfers
control to the cold boot entry point in the BIOS—the first jump instruction in the
BIOS jump vector.

The bootstrap loader is a stand-alone program; it cannot make use of any
CP/M functions because no part of CP/M is in memory when the bootstrap loader
is needed. The firmware in the PROM that loaded the bootstrap may contain some
subroutines that can be used by the bootstrap, but this will vary from system to
system.

Figure 7-7 shows the bootstrap code for the example BIOS (from Figure 6-4).
This code has been written in a general way, so that you can adapt it to your
system. The disk controller on the example system can in fact read in multiple
sectors from the disk, but for generality the code shown reads in only one sector at
a time. This considerably increases the time it takes to load CP/M, but does make
the bootstrap loader more general.

Note that almost the first thing that the bootstrap does is to output to the
console a sign-on message. Not only does this confirm the version number, but it
shows that the bootstrap has been successfully loaded.

The PROM-based code has been designed to load the CP/M bootstrap into
location 100H, allowing the code to be debugged as though it were a normal
transient program, albeit with minor changes to the address at which it loads the
CP/M image from disk. Clearly, this feature is not very helpful if CP/M is being
brought up for the first time on a computer system. It helps a great deal, however, if
you need to modify the bootstrap or add the capability to boot your system from a
new type of disk drive.

198 The CP/M Programmer’s Handbook

3130
3720
3432
3238

Q000

0040

0900

0200
QE0O

Q008
1F00

E00Q

E804&
F&00

0001
0012
0009
Q200

[H

Version
Month
Day
Year

Debug

Example CP/M cold baotstrap loader

This program is written out to track O, head 0, sector 1
by the PUTCPMFS program.

It is loaded into memory at location 100H on up by the
PROM-based bootstrap mechanism that gets control of the
CPU on powar up or system reset.

EQu 017 jEquates used in the sign-on message
EQU ‘077

EQu 29

EQU g2

EQu 4] 3Set nonzero to debug as narmal

3 transient program

The actual layout of the diskette is as follows =

)]

7
]
3 Track © Sector
3 1 2 3 4 S & 7] @
3 Head + R
1 O H i< BDOS H
H
7 1 BIOS N
H 10 11 12 13 14 15 16 17 18
H Sector
3 Equates for defining memory size and the base address and
H length of the system components.
Memor y$Size EQU &4 sNumber of Kbytes of RAM
H The BRIOS Length must match that declared in the BRIOS,
BIOS$Length EQU OR00H
CCP$length EQU 0200H ;Constant
BDOSsLength EQ OEOQOH sConstant -
Lengths$InskK EQU ((CCP$Length + BOOS$Length + BIOS$Length) / 1024) + 1 | I
Lengthsins$Bytes EQU CCPslLength + BDOSsLenath + BIOS$lLength /
IF NOT Debug
CCP$ENtry EQU (Memory$Size - LengthsInsk) = 1024
ENDIF
IF Debug
CCP$Entry EQU JIPROH 3jRead into a lower address.
3This address is chosen to be above
3 the area into which DDT initially loads
3 and the 980H makes the addresses similar
3 to the SYSGEN values so that the memory
3 image can be checked with DDT.
ENDIF
BDOS$Entry EQU CCP$Entry + CCP$Lenath + &
BIOSSEntry EQU CCP$Entry + CCP$Length + BDOS$sLength
H Disk characteristics
H These equates describe the physical characteristics of
H the floppy diskette so that the program can move from
H one sector to the next, updating the track and resetting
3 the sector when necessary.
First$SectorsonsTrack EQu 1
LastéSectorsonsTrack EqQu 1
Last$SectorsonsHeads0 EQu @
Sector$Size EQu S12

Controller characteristics

Figure 7-7.

Example CP/M cold bootstrap loader

Chapter 7: Building a New CP/M System

199

(UL})

0000
0002
0010

0100
0100

Q00D
Q00A

0103

011A
ol11cC
0124
0128
0127
0129
0124
oi2C
o120
Ql2F

0045
0045
0043

0132

0133
0134
0135
0136
0137
013&
013A
013C

Q13

0140

L}
o e s v (fy e v we e e

On this computer system, the floppy disk controller can read
multiple sectors in a single command. However, in order to
produce a more genaral example it is shown only reading one
sector at a time.

ectorsPerRead EQu 1
Cold boot characteristics
= Start$Track EQU Q sInitial values for CP/M image
= StartsSector EQU 2 j= " =
= Sectors$TosRead EQU {Length$InsBytes + Sector$Size - 1) / Sectors$Size
ORG 100H
ColdsRootsloader:
C34001 JMP MainsCode sEnter main code bedy
:For reasons of clarity, the main
3 data structures are shown before the
3 executable code.
= CR EQU QDH sCarriage return
= LF EQU QAH sLine feed
Signon$Message:
ODOA4ITO2F e CR,LF, "CP/M Bootstrap Loader~”
IF Debug
DR “ (Debug)
ENDIF
ODRO0A DB CR,LF
SEA5727349 DB “Version *
3031 oW Version
20 DB v
3037 oW Month
2F DB A
3234 oW Day
2F e A
3832 2] Year
ODOAQQ DB CR,LF,0
H Disk Control Tables
5
= Disk$Controlss EQU 45H 35 1/4" control byte
= Command$Block$S EQU 48H sControl table pointer
= Disks$Status EQU 43H sCompletion status
H The command table track and DMASAddress can also be used
] as working storage and updated as the load process
H continues. The sector in the command table cannot be
H used directly as the disk controller requires it to be
H the sector number on the specified head (1 —- 9) rather
3 than the sector number on track. Hence a separate variable
H must be used.
Q2 Sector: jalc] Starts$Sector
ol Command$Table: DR O1H ¢ Command -- read
00 Unit: DB o] sUnit (drive) number = 0 or 1
Q0 Head: R [¢] tHead number = O or 1
Q0 Track: DE Start$Track tUsed as working variable
[o]e] Sectorson$head: DB 0 ;Converted by low-level driver
0002 BytesCount: ju) Sectors$Size % Sectors$Per$Read
00EQ DMASAddress: oW CCP$Entry
4300 Next$Status: DW Disk$Status tPointer to next status block
3 if commands are chained.
4500 Next$Control: oW Disk$Control$S ;Pointer to next control byte
t+ if commands are chained.
Main$Code:
3100014 LX1 SP, Cold$Boot$Loader 1Stack grows down below code

Figure 7-7. (Continued)

200 The CP/M Programmer’s Handbook
0143 210301 Lx1 H, Signon$Message ySign on
014& CDD90L CALL Display$Message
Q149 213301 LXI H, Command$Table sPoint the disk contrcller at
014C 224400 SHLD Command$BlocksS ;3 the command block
O14F QE10Q MVI C, SectorsToRead ;Set sector count
Loads$toop:
0151 Cb7BO1 CaLL Cold$Root$Read sRead data into memory
0154 0D DCR c s Downdate sector count
IF NOT Debug
0155 CAQOF& 4 BIOSSEntry sEnter BIQS when load done
ENDIF
IF Debug
JZ] sWarm boot
ENDIF
0158 213201 LXt H, Sector sUpdate sector number
O15B 3E01 MVI A, Sectors$PersRead 3 by adding on number of sectors
015D 86 ADD M ; by controller
O1SE 77 MOV M, A sSave result
O1SF 3E13 MVl A,Last$SectorsOn$Track + 1 sCheck if at end of track
0161 BE CMP M
0142 C24E01 JNZ NotEndTrack
0165 3801 MVI M,First$Sector$0n$Track ;Yes, reset ta beginning
0167 2A3601 LHLD Track sUpdate track number
016A 23 INX H
0168 223401 SHLD Track
NotEndTrack:
014E 2A3A01 LHLD DMASAddress sUpdate DMA Address
0171 110002 LXI D,Sector$Size ® Sectors$Per$Read
174 19 DAD]
0175 223A01 SHLD DMASAddress
0178 C35101 MR Load$Loop sRead next block
ColdsBoot$Read: 3At this point, the description of the
3 operation requivred is in the variables
3 contained in the command table, along
3 with the sector variable.
017B CS PUSH B ;Save sector count in C
[Aateinmhas Change this routine to match the disk controller in use ——-————
017C 0600 MvI B, 0 sAssume head Q
017E 3A3201 LbA Sector ;Get requested sector
0181 4F MOV C,A 3 Take a copy of it
0182 FEOA CPI Last$Sectorsons$Head$0+1 ;Check if on head 1
0184 DASROL JC Heads0 s No
0187 D&Q? suf Last$SectorsondHead$0 ;Bias down for head 1
0189 AF MQV C,A iSave copy
0184 04 INR B 3Set head 1
Head$0: .
Q18R 78 MoV A B ;Get head
018C 323501 STA Head
0Q18F 79 MoV A,C ;Get sector
0190 323701 STA Sector$OnsHead
0193 214300 LXI H,DisksControlss sActivate controller
0194 3680 MVI M, 80H
WaitsFarsRoot$Complete:
0198 7€ AM ;Get status byte
0199 B7 ORA A ;Check if complete
019A C29301 WNZ WaitsFor$BootsComplete ;No
i Yes, check for errors
0190 244300 LDA Disk$Status
01A0 FERO cPI 80H
01A2 DAA701 JC Cold$Roct $Ervror :Yes, an ervor occurred
P ———— End of physical read routine --——---
Figure 7-7. (Continued)

Chapter 7: Building a New CP/M System 201

01AS C1 PP B sRecover sector count in C
01A8 C9 RET

Cold$Boot$Ervor:
01A7 21B0Ot LX1 H,Cold$Boot$Error$Message
01AA CDD901 CALL Display$Message ;0utput error message
O1AD C34001 JMP MainsCode sRestart the loader

Cold$Boot$Errors$Message:
01BO ODOA426F6F DB CR,LF, “Bootstrap Loader Error - retrying...’,CR,LF,0

Equates for Terminal Cutput

PrR—

0001 = Terminal$StatussPort EQU 01H
0002 = Terminal$DatasPort EQu ozZH
0001 = Terminal$Output$Ready EQU 0000%$0001B
¥
s .
Display$SMessage: sDisplays the specified message on the console,

1On entry, HL points to a stream of bytes to be
toutput. A OOH-byte terminates the message.

01Dy 7E MOV AN 1Get next message byte

01DA B7 ORA A sCheck if terminator

01DB C8 RZ 3Yes, return to caller

01DC 4F [, [a17] C,A tPrepare for output
OutputNotReady:

01DD DBO1L IN Terminal$StatussPort ;Check if ready for output

O1DF E&01 ANI Terminal$Output$Ready

01E1 CADDO1 Jz OutputshotsReady 3No, wait

Q1E4 79 MOV A.C 31Get data character

O1ES D302 ouT Terminal$DatasPort sO0utput to screen

Q1E7 23 INX ;Move to next byte of message

01E8 C3DP01 JMP stplaysnessaqe sLoop until complete message output

3 The PROM-based bootstrap loader checks
3 to see that the characters "CP/M"

3 are on the diskette bootstrap sectar
t before it transfers control to it.

02E0 ORG 2E0H
02E0 43502F4D DB “CP/M”
02€E4 END ColdsBootsLoader

Figure 7-7. (Continued)

In this case, the bootstrap code must be loaded at location 0780H, not the
normal 0980H, because the bootstrap takes a complete 512-byte sector (200H).
The same principle applies in determining the offset value to be used with DDT’s
“R” command to read the bootstrap HEX file, namely:

offset = load address — execution address.
In this case, the values are the following:
0680H = 0780H — 0100H

Using MOVCPM to Relocate the CCP and BDOS

MOVCPM builds a CP/M memory image at the correct locations for
SYSGEN, but with the instructions modified to execute at a specific address.
Inside MOVCPM is not only a complete replica of CP/M, but also enough

202 The CP/M Programmer’s Handbook

information to tell MOVCPM which bytes of which instructions need be changed
whenever the execution address of the image needs to be moved.

MOVCPM, as released from Digital Research, contains the bootstrap and
BIOS for an Intel MDS-800 computer along with the generic CCP and BDOS.
Unless you have an MDS-800, all you use is the CCP and BDOS. Some manufac-
turers have customized MOVCPM to include the correct bootstrap and BIOS for
their own computers; consult their documentation to see if this applies to your
computer system.

When you invoke MOVCPM, you have the following options:

- MOVCPM<cr>
MOVCPM will relocate its built-in copy of CP/M to the top of available
memory and will then transfer control to this new image of CP/M. Unless
your manufacturer has included the correct BIOS into MOVCPM, using this
option will cause an immediate system crash.

+ MOVCPM nn<cr>
This is similar to the option above, except that MOVCPM assumes that nnK
bytes of memory are available and will relocate the CP/M image to the top of
that before transferring control. Again, this will crash the system unless the
correct BIOS has been installed into MOVCPM.

+ MOVCPM #* *<cr>
MOVCPM will adjust all of the internal addresses inside the CP/M image so
that the image could execute at the top of available memory, but instead of
actually putting this image at the top of memory, MOVCPM will leave it in
low memory at the correct place for SYSGEN to write it onto a disk. The
SAVE command could also preserve the image on a disk.

+ MOVCPM nn x<cr>
MOVCPM proceeds as above for the “* *” option except that the CP/M
image is modified to execute at the top of nnK.

MOVCPM has a fundamental problem. The nn value indicates that the top of
available memory is computed, assuming that your BIOS is small—less that 890
(380H) bytes. If your BIOS is larger (as is the case with the example in Figure 6-4),
then you will have to reduce the value of “nn” artificially.

Figure 7-8 shows the relationship between the size of the BIOS and the “nn”
value to use with MOVCPM. It also shows, for different lengths of BIOS, the BIOS
base address, the offset value to be used in DDT to read in the BIOS to location
1F80H (preparatory to using SYSGEN or PUTCPM to write it out), and also the
base addresses for the CCP and the BDOS. The base address of the BDOS
indicates how much memory is available for loading transient programs, as the
CCP can be overwritten if necessary.

The numbers in Figure 7-8 are based on the assumption that you have 64K of
memory in your computer system. If this is not the case, then proceed as follows:

Chapter 7: Building a New CP/M System 203

1. Convert the amount of memory in your system to hex. Remember that 1K is
1024 bytes.

2. Determine the length of your BIOS in hex.

3. Locate the line in Figure 7-8 that shows a BIOS length equal to or greater
than the length of your BIOS.

4. Usingthe “H” command in DDT, compute the BIOS Base Address using the
formula:
Memory in system — BIOS length from Figure 7-8

5. Find the line in Figure 7-8 that shows the same BIOS Base Address as the
result of the computation above. Use this line to derive the other relevant
numbers.

It is helpful to use DDT to examine a CP/M image in memory to check that all
of the components are correctly placed, and, in the case of the CCP and BDOS,
correctly relocated.

Figure 7-9 shows an example console dialog in which DDT is used first to
examine the memory image produced by MOVCPM and second to examine the
image built into the PUTCPMF utility shown in Figure 7-5.

BIOS
Length

600

AQO

EOO
1200
1600
1A00
1E00
2200
2600
2A00
2E00
3200
3600
3A00
3EOQ
4200
4600
4A00
4E00
5200
5600
S5A00
SEOO
6200
6600
&A00

BIOS DDT MOVCPM CcCP BDOS
Base Offset ‘an’ Base Base
FAOO 2580 4 E400 ECO0
F&00 2980 43 E000 ES00
F200 2080 &2 pCOO E400
EECO 3180 &1 D800 EOQO
EACO 3580 60 D400 DCOO
E&00 3980 59 DO0C D800
E200 3080 58 €Coo D400
DEOO 4180 57 €800 DOOO
DAOO 4580 56 €400 ccoo
D600 4980 55 €000 €800
D200 4p80 54 BCOO £400
CE0O 5180 53 B80OO €000
CAOO 5580 52 B400 BCOO
€600 5980 51 BOOO BEOO
€200 5D80 50 ACOO B40O
BEOO 6180 49 AB0O BOOO
BAOQ 6580 48 A400 ACOO
B600 6980 47 A000 AB0O
B200 6080 46 9C00 A400
AEOO 7180 45 9800 A0OO
AAOO 7580 44 9400 €00
AGOD 7980 43 9000 9800
A200 7D80 42 8C00 9400
9E00 8180 a1 2800 9000
9400 8580 40 8400 8C00
9600 8980 39 8000 2800

Apart from the MOVCPM ‘nn’ value all other values are in hexadecimal

Figure 7-8.

CP/M addresses for different BIOS lengths

204 The CP/M Programmer’s Handbook

Call up MOVCPM requesting a “43K° system
and the image to be left in memory.
ArMayepm &3 #<er>
CONSTRUCTING €3k CP/M vers 2.2
READY FOR "SYSGEN" OR

"SAVE 34 CPM&3.COM"

Save the image from location 100H up. By
convention, the file name is CPMnn.COM, so
in this case it will be CPM&3.COM

Call up DDT and request that it read in
CPM&3.COM

A>ddt cpmé:

DDT VERS 2

NEXT FPC

Q300 0100
Display memory to show the first few bytes of
the CCP. Note the two JMP (C3H) instructions,
followed by 7FH, OOH, 20H“s, and the Digital
Research Copyright notice. These identify the
code as being the CCP. Note that the first
JMP instruction is to 35CH into the CCP -- ycu
can therefore infer the base address of the
CCP. In this case the UMP is to locat;on E35C,
tharefore this version of the CCP has been
configured to execute based at EOOOH.

-d980, yeflor>

0980 C3 SC €3 C3 58 E3 7F 00 20 20 20 20 20 20 20 20 .\..X...

0?90 20 20 20 20 20 20 20 20 43 4F S50 S9 52 49 47 48 COFYRIGH

OPA0 54 20 2B 43 29 20 31 39 37 39 2 20 44 49 47 49 T (0) 1979, DIGI
OPRO §4 41 4AC 20 52 45 B3 45 41 52 43 48 20 20 00 00 TAL RESEARCH ..
Q9CG 00 00 00 OO 00 00 G0 00 00 00 00 00 Q0 00 00 00 ..icvuwvasnsnvans

Display the first few bytes of the BDOS, Note
the JMP instruction at 11864. This is the
instruction to which control is transferred
by the JMP in location S,

1180 Q0 16 00 00 09 85 C3 11 E8 99 EQ AS E® AR EB Bl t.cvvvcrvnnnavrs

Displaying further up in the BDOS identifies

it unambiguously -- there are some ASCII error
messages.
CDh £5 E8 C3 00 00 42 64 6F 73 20 45 .!'..... ...Bdos E

1240 72 72 20 4F &6E 20 20 3A 20 24 42 &1 64 20 53 65 rr On : $Bad Se
1250 63 74 &F 72 24 53 65 &C 65 63 74 24 46 &9 6C 65 ctorsSelects$File
1240 20 $2 2F AF 24 ES CD C¥ E9 3A 42 ER Cé 41 32 €6 R/0s....:B..AZ,

Display the first few bytes of the BIOS.

Notice the BIOS JMP vector —— the series of C3H

instructions. Normally the first instruction

in the vector can be used to infer the base

address of the BIOS; in this case it is

FS00OH. But there is no rule that says that

the cold boot code must be close to the BIOS

JMP vector —- so this is only a rough guide.
1FR0 C3 B2 Fé C3 €3 F& C3 &1 F7 C3 64 F7 C3 6A F7
1FP0 &D F7 C3 72 F7 C3 75 F7 C2 78 F7 C3 7D F7 C3
1FAO F7 C3 AC F7 C3 BB F7 €3 C1 F7 C3 CA F7 C3 70
1FRO C2 Bl F7 82 F& 00 00 Q0 00 00 00 &E FB8 73 Fé
1FCO F? EE F& 82 Fs 00 00 Q0 00 00 Q0 &E F8 73 Fé
1FDO F9 1D F® 82 F& 00 00 00 00 00 00 &E F8 73 Fé
1FEQ F9 4C F9 82 F4 00 Q0 00 00 00 Q0 4E F8 73 Fé
1IFFO Fy 7B F? 1A 00 03 07 Q0 F2 00 3F 00 CO 00 10
2000 02 00 Q1 07 OD 13 19 05 OB 11 17 03 09 OF 15
QW10 08 QE 14 1A 08 OC 12 18 04 OA 10 16 OD OA 0A
2020 3 4B W0 43 JO 2F 4D 20 76 &5 72 73 20 32 2E 32 3k CP/M vers 2.2
Q030 0D 0A 00 31 Q0 Ol 21 ¥C F6 CD D3 F7 AF 32 04 00 ...1..'.00vua20s

Figure 7-9. Using DDT to check CP/M images

Chapter 7. Building a New CP/M System 205

In contrast, load DDT and request that it
load the PUTCPMFS.COM program.

DDT VERS 2.2

NEXT FPC

2900 0100

Display the special bootstrap loader that

starts at location 0780H (compared to the

MDS-800 bootstrap which is at 0980H). Note

the sign-on message.
-d780, 7af<or>
0780 C3 40 01 QD QA 43 S0 2F 4D 20 42 &F &F 74 73 74 .@...CP/M Bootst
Q790 72 &1 70 20 4C &F &1 64 65 72 OD OA T6 &5 72 73 rap Loader..Vers
Q7A0 &9 &F &E 20 30 231 20 30 37 2F 32 34 2F 238 32 0D ion 01 07/24/82.

Confirm that the CCP is loaded in the correct
place. Check the address of the first JMP
instruction (OE3SCH).
0980 C3 SC E3 €3 S8 E3 7F 00 20 20 20 20 20 20 20 20 .\..X...
0990 20 20 20 20 20 20 20 20 43 4F S0 59 52 49 47 48 COPYRIGH
09A0 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 37 49 T (C) 1979, DIGI
O9BO T4 41 AC 20 52 45 S3 45 41 52 43 48 20 20 00 00 TAL RESEARCH ..

Confirm that the BDOS is also in place.

~d1180, L18f<cr>
1120 00 16 00 00 09 85 C3 11 ER 99 E® AS ES AB E8 Blvvenvennnnn .

Confirm that the BIOS has been loaded in the
caorrect place. Check the first JMP to get
some idea of the BIOQS base address. Note the
sign—-on message.

FE C2 62 F8 C3 78 FR C3 86 F8 €3 ...vevuboux.nnes
£3 C5 F8 C3 B& FB C3 OE FB C3 3B
483 FB C3 DE FB C3 F8 FRB (3 %4 F& .
00 00 00 42 6E 25 DF Ot B& DE 02Bn%.....
2F 4D 20 32 2E 32 2E 30 30 20 I0 |..CP/M 2.2.00 0
38 32 OD OA OA 52 &9 6D 70 &6C &5 7/15/82...Simple
OD OA OA 44 69 73 6B 20 43 &F 6E BIOS...Disk Con
61 74 67 6F 6E 20 3A OD 0A QA 20 figuration ...
3A 20 30 2E 33 35 20 4D 62 79 74 A: 0.35 Mbyt
44 6C 6F 70 70 79 OD OA 20 20 20 e 5" Floppy..

30 2E 33 35 20 4D &2 79 74 65 20 B: 0.35 Mbyte
&F 70 70 79 OD OA OA 20 20 20 20 5" Floppy...

Figure 7-9. Using DDT to check CP/M images (continued)

Putting it all Together

Figure 7-10 shows an annotated console dialog for the complete generation of
a new CP/M system. Note that the following file names appear in the dialog:

BIOS1.ASM Figure 6-4.
PUTCPMFS. ASM Figure 7-5.
BOOTFS. ASM Figure 7-7.

206 The CP/M Programmer’s Handbook

CP/M ASSEMBLER
02€4

004H USE FACTOR
END OF ASSEMBLY

:v|n
Ml

4tcpml
CP/H ASSEMBLER — VEI
01DB
QO3H USE FACTOR
END OF ASSEMBLY

cP/M ASSEHBLER -~ VER 2.0
FE&SC

011H USE FACTOR

END OF ASSEMBLY

Crddt cpméd, comsorz
DD VERS 2.2

NEXT PC

2300 0100

—raerl

2300 0100

~ibootf5. hex<cr>
-r&80<er>
NEXT FPC

2300 0100

27EC 0000

-g0{er?

Assemble the CP/M Bootstrap Loader,
with the source code and HEX file
on drive C:, no listing ocutput.

Assemble the PUTCPMFS program (that
writes CP/M onto the disk), with
the source code and HEX file an
drive C:, no listing output.

Assemble the BIOS with the source
code and HEX file on drive C:, no
listing output.

Start piecing the CP/M image
together. Load DDT and ask it to
raad in the file previously SAVEd
after a MOVCPM &3 =.

Indicate the file name of
PUTCPMFS.HEX, and read in without
any offset (i.e. it will load at
100H because of the ORG 100H it
contains).

Indicate the file name of
BOOTFS.HEX and read in with an
offset of 680H to make it load at
730H on up (it contains ORG 100H
too).

Indicate the file name of the BIOS
HEX file, and read it in with an
of fset of 2980 such that it will
load at 1FS0H (it contains an ORG
OF600H) .

Exit from DDT by going to location
QO00H and executing a warm boot.

Save the complete CP/M image on
disk. Saving 40 296-byte pages from
location 100H to 2900H.

Figure 7-40.

Console dialog for system build

Chapter 7. Building a New CP/M System 207

Load and execute the PUTCPMFS
Program,
CrputecpmfS<cr>

PUTCPMFS signs on

Put CP/M on Diskette

Version 01 07/24/82
and writes the CP/M image to
disk.

C>

Figure 7-10. Console dialog for system build (continued)

BIOS Enhancements
Character Input/Output
Data Structures

Disk Input/Output
Custom Patches to CP/M
An Enhanced BIOS

Writing An
Enhanced BIOS

This chapter describes ways in which you can enhance your BIOS to make
CP/M easier to use, faster, and more versatile.

Get a standard BIOS working on your computer system, and then install the
additional features. Although you can write an enhanced BIOS from the outset, it
will take considerably longer to get it functioning correctly.

A complete listing of an enhanced BIOS is included at the end of this chapter. It
is quite large: approximately 4500 lines of source code, with extensive comments
and long variable names to make it more understandable.

The sections that follow describe the main concepts embodied in the enhanced
BIOS listing.

209

210

The CP/M Programmer’s Handbook

BIOS Enhancements

BIOS enhancements fall into two classes: those that add new capabilities and
those that extend existing features.

Some enhancements are normally accompanied by utility programs that allow
you to select the enhancement option from the console. For example, when the
BIOS is enhanced to include a real time clock, you need a utility program to set the
clock to the correct time. Other enhancements will not require supporting utilities.
For example, if the disk drivers are improved to read and write data faster, the
enhancement is “transparent.” As a user, you are aware of the results of the
enhancement but not of the enhancement itself.

Viewed at its simplest, the BIOS deals with two broad classes of input/output:

Character input/output
This includes the console, auxiliary, and list devices.

Disk input/output
This can accommodate several types of floppy and hard disks.

Enhancements in these areas do not fundamentally change the way that the
BDOS and CCP interact with these devices. Instead, enhancements improve the
way in which the device drivers deal with the devices. They can improve the speed
of manipulating data, the way of handling external devices, or the user’s control
over the behavior of the system.

The example enhanced BIOS has capabilities not found in standard CP/M
systems, These can be grouped in several main categories:

Character input/output
This area probably benefits most from enhancement. This is partly because
such a wide range of peripheral devices needs to be supported and partly
because this is the most visible area of interaction between you and your
computer. Any improvements here will therefore be immediate and obvious
to you as a user.

Error handling
CP/M’s error handling is, at best, startling in its simplicity. Enhanced error
handling gives you more information about the nature of the failure, and
then gives you the options of retrying the operation, ignoring the error, or
aborting the program. This topic is covered in detail in Chapter 9.

System date and time
This is the ability to maintain a time-of-day clock and the current date. It
allows your programs to set and access the date and time. In addition, your
system can react to the passing of time, and you can move certain opera-
tions into the time domain. For example, you can set upper limits on the

Chapter 8: Writing an Enhanced BIOS 211

number of seconds, or milliseconds, that each operation should take, and
arrange for emergency action if the operation takes too long.

Logical-to-physical device assignment
CP/M’s logical-to-physical device assignment is primitive. With enhance-
ments, you can use any character input/output device as the system
console, and output data to several devices at the same time.

Disk input/output
CP/M only knows about the 128-byte sector. Even with the deblocking
routines shown in Figure 6-4, overall disk performance can be slow.
Performance can be improved dramatically by “track buffering” (in which
entire tracks are read and written at one time) or by using a memory disk
(that is, using large areas of RAM as though they were a disk). These have a
cost, though, in increased memory requirements.

Public files
CP/M’s user number system needs improvements to function well in
conjunction with large hard disks.

Preserving User-Settable Options

A by-product of adding features to the BIOS is that many of these features have
options that you can alter, either from the console using a utility program or from
within one of your programs.

Each of these options, once set according to your preferences, or to the
requirements of your hardware, do not normally change from day to day. There-
fore, the BIOS should be designed so that options set by the user can be “frozen” or
preserved on the disk by using a utility program, FREEZE. All of the variables
recording these options are gathered into a single area and then this area is written
out to the disk.

This area is called the configuration block . In practice, there are two configura-
tion blocks: one short term and the other long term. The short term block is not
preservable — you can set options within it, but they cannot be preserved after you
switch your computer off. The system date, for example, is normally set each time
you turn your computer on, and therefore is kept in the short term block. The baud
rate for your printer, on the other hand, is kept in the long term block so that it can
be saved permanently.

An extra BIOS entry point, CBGet Address, has been built into the enhanced
BIOS so that utility programs can locate variables in both configuration blocks.
For example, when a utility needs to know where the date is kept in memory,
it calls CBGetAddress using a code number (specific for date) in a register.

CBGetAddress returns the address of the date in memory. If a new version of the
BIOS is produced with the date in a different location, CBGetAddress will still
hand the correct, although different, address back to the utility program.

212 The CP/M Programmer’s Handbook

Two other variables that CBGetAddress can access pertain to the con-
figuration block itself. One is the relative address of the start of the long term
configuration block. The other is the length of the long term block. These are used
by the FREEZE utility when it needs to preserve the long term block on a disk.
FREEZE must (1) read in the sectors containing the long term block from the
CP/M BIOS image on the reserved area of the disk, (2) copy the current RAM-
resident version of the long term block over the disk image version, and then (3)
write the sectors back onto the disk.

Figure 8-1 shows how the long term block appears on disk and in memory. The

CP/M Image
on Disk

Long Term Configuration Block Sector Boundaries
CCP BDOS \< BIOS
— | —— ~ -
Relative Address at
Long Term Block From Configuration Block Length

the Start of the BIOS Memory

Start of BIOS

BDOS

® Copy RAM-resident Version

L cCp

> 2.
3 e

LEY

Disk Disk

©® Read from L] l ©® Write to
Disk Disk
Configuration / \FREEZE Utility’s Buffer

Block

Figure 8-4. Saving the long term configuration block

Chapter 8: Writing an Enhanced BIOS 213

size of the CCP and BDOS do not change, even if the BIOS does. Therefore, the
sector containing the start of the BIOS will not change. The formula (using
decimal numbers)

BIOS Start Sector + INT(Relative LTB Address / 128)

then gives the start sector number to be read in. The number of sectors to read is
calculated as follows:

(Long Term Block Length + 127)/ 128

The relative address and length can be used to locate the long term block in the
BIOS executing in RAM.

Character input/Output

The character I/O drivers shown in the example BIOS, Figure 8-10, have been
enhanced to have the following features:

- A single set of driver subroutines controlling all character devices

- Preservation of option settings

- Flexible redirection of input/output between logical and physical devices
- Interrupt-driven input drivers, to get user “type-ahead” capability

- Support of several different protocols to avoid loss of data during high-
speed output to printers or other operations

- Forced input of characters into the console input stream, allowing automatic
commands at system start-up

+ Conversion of terminal function keys into useful character strings

+ Ability to recognize “escape sequences” output to the console and to take
special action as a result

- Ability to read the current time and date as though they were typed on the
console

+ “Timeout” signaling when the printer is busy for too long.

Each of these features is discussed in the following sections, as an introduction
to the actual code example.

Single Set of Driver Subroutines

Inthe following examples, only a single set of subroutines is used to process the
input and output for all of the physical devices in the system.
This is made possible by grouping all of the individual device’s characteristics

214 The CP/M Programmer’s Handbook

into a table called the device table. For example, in order to get a character from
the current console device, the address of its device table will be handed over to the
subroutines. These in turn will use the appropriate values from the device table
when they need to access a port number or any unique attribute of that device.

In our example, the drivers assume that all of the physical devices use serial
input/output. To support a device with parallel input/output, you would need to
extend the device table to include a field that would enable the drivers to detect
whether they were operating on a serial or parallel device. You wouild probably
also have to add different device initialization and input/output routines more
suited to the problems of dealing with a parallel port.

The device table structure consists of a series of equate (EQU) instructions.
These define the relative offset of each field in the table. Each definition is
expressed by referencing the preceding field so that you can insert additional fields
without revising the definitions for all the other fields.

Individual instances of device tables are then defined as a series of define byte
(DB) and define word (DW) lines. The drivers are given the base address of the
device table whenever they need to do something with a device. By adding the base
address to the relative address (defined by the equate), the drivers can determine
the actual address in memory that contains the required value. The detailed
contents of the device table are described later in this chapter.

Permanent Setting of Options

About the only options that need preserving in the long term configuration
block are the values used to initialize the hardware chips. Other options can be set
during automatic execution of the command file when CP/M is first loaded.

Redirection of Input/Output Between Devices

As you recall, the BDOS only “knows about” the logical devices console,
reader, punch, and list. Using the IOBYTE at location 0003H in conjunction with
the STAT utility, you can redirect the BDOS to assign the logical devices to specific
physical devices. However, the redirection provided by CP/M is rather primitive. It
permits only four physical devices per logical device. Input and output of a logical
device must always come from the same physical device. Output data can only be
sent to a single destination, or (using the CONTROL-P toggle) to the console and the
list device.

The system in Figure 8-10 supports up to 16 physical devices. Any one of these
devices can act as the console, reader, punch, or list device. Input can come from
any single device. Output can be sent to any or all of the devices. Each logical
device’s input and output are separate —that is, console input can come from
physical device X while the output can be sent to physical devices Y and Z.

Device redirection can be done dynamically, either from within a program or
by using a system utility program. For example, if you have some special input

Chapter 8: Writing an Enhanced BIOS 215

device, your program can momentarily switch over to reading input from this
device as though it were the console, and then revert back to reading data from the
“real” console.

This redirection scheme is achieved by defining a 16-bit word, called the
redirection word, in the long term configuration block for each of the following
logical devices:

- Console input

+ Console output

- Auxiliary (reader/punch) input

+ Auxiliary (reader/punch) output

+ List input (printers need to send data, too)

+ List output.

Each bitin a given redirection word is assigned to a physical device. For input,
the drivers use the device corresponding to the first 1 bit that they find in the
redirection word. For output, the drivers send the character to be output to all of
the devices for which the corresponding bit is set.

The example code does not select a different driver for each bit set — it selects a
specific device table and then hands over the base address of this table to the
common driver used for all character operations.

Interrupt-Driven Input Drivers

With a standard CP/M BIOS, character data is read from the hardware chips
only when control is transferred to the CONIN or READER subroutines. If this
character data arrives faster than the BIOS can handle, data overrun occurs and
incoming characters are lost.

By using interrupts, the hardware can transfer control to the appropriate
interrupt service routine whenever an incoming character arrives. This routine
reads the data character and places it into a buffer area to wait for the next CONIN
or READER call, which will get the character from the buffer and feed it into the
incoming data stream.

User programs and the CCP are “unaware” of this process, perceiving only
that data characters are available. However, users will become aware of the
process; they will be able to enter data characters from the keyboard before the
program is ready for them. This gives the technique its other name —“type-
ahead.” Although this technique does not alter the speed of execution of any
programs running under CP/M, it does create the illusion of greater speed, since
pauses while a program accepts data vanish completely. The user can enter data at
a rate convenient to the tasks or thoughts at hand, without regard to the rate at
which the program can accept that data.

216 The CP/M Programmer’s Handbook

The example contains the code necessary to handle arriving characters under
interrupt control. In order to be of general applicability, the code assumes a “flat”
interrupt structure:; that is, all character input interrupts cause control to be
transferred to the same address in memory. The address is determined by the
actual hardware interrupt architecture.

The simplest interrupt schemes use the restart (RST) instructions built into the
8080 CPU chip. In the RST scheme, the external hardware interrupts what the
CPU chip is doing and forces one of the eight RST instructions into the processor.
Each RST instruction causes the processor to execute what is, in effect,a CALL
instruction to a predetermined address in memory.

In more complicated systems, a specific interrupt controller chip (such as the
Intel 8259A) will be used. In addition to providing very sophisticated (and
complicated) prioritization of interrupts, the interrupt controller can transfer
control to a different address depending on which physical device causes the
interrupt. It does this by forcing the CPU to execute a CALL instruction to a
different address for each device.

In both architectures, it is the responsibility of the BIOS writer to initialize all
the hardware chips so that an interrupt occurs under the correct circumstances.
The BIOS writer also must plant instructions at the correct places in memory to
receive control from an RST instruction or from the fake CALL instruction
emitted by the interrupt controller.

Some hardware requires that the interrupt service subroutine inform it as soon
as the interrupt has been serviced and the character has been input. The example
drivers provide for this.

This section deals with using interrupts for the input drivers, not the output
drivers. All of today’s microcomputers can output data much faster than external
peripherals can handle. After the first few minutes of output, the computer will fill
any reasonably sized buffer —and from this point there is no advantage in having
a buffered output system. The computer still must slow down to the peripheral’s
data rate for each character, although now it is waiting to put the character in the
output buffer rather than out to the peripheral.

One exception to this is where you have a large amount of “spare” memory and
a “slow” printer (which most of them are). Increasing numbers of systems have
more than 64K of RAM. The 8080 or Z80 can’t address more than this, but a
“bank switched” memory system can switch blocks of memory in and out of that
64K address space.

Using this trick, you can access memory “unknown” to CP/M, store some
characters in it, switch back to the normal 64K memory, and return control to the
caller of the BIOS output routine. When the physical device is ready to accept
another output data character from the CPU, it will generate an interrupt. The
interrupt service routine then will access the “secret” buffer, output the characters
to the device, and switch back to the normal memory.

For example, if you have a printer that prints at 80 characters per second and

Chapter 8: Writing an Enhanced BIOS 247

Program’s Buffer

T

H THIS

1 /)

S 1

— Get (CONIN)
1
S
Keyboard &
Interrupt D
A A A
—] 4 = ﬁ
L
PUT
Figure 8-2. Circular buffer type-ahead

you can afford to use 64K of bank switched memory, you can squirrel away 13
minutes of printing— or even more if you design a scheme to compress blanks,
storing them in the hidden buffer as a special control sequence.

From the point of view of software, interrupt-driven input drivers are divided
into two major groups: the interrupt service routine that reads the characters and
stacks them in a buffer, and the non-interrupt routines that get the characters from
the buffer and handle the other BIOS functions such as returning console status.

The input character buffer serves as a transfer mechanism between the two
groups of subroutines, although the device table also plays an important role.

The example code uses a circular buffer, as shown in Figure 8-2.

The drivers start putting data into the beginning of the buffer. When the last
character in the buffer has been reached, the drivers reset to the beginning of the
buffer and start over. This, of course, assumes that the non-interrupt drivers have
been getting data from the front of the buffer, thus creating space for additional
incoming data.

Each device table contains the address of the input buffer, a “put” pointer (for
the interrupt service routine), and a “get” pointer (for the non-interrupt service
routine). It also contains two character counts: the total number of characters and
the number of control characters in the input buffer. You can see how the put and

218 The CP/M Programmer’s Handbook

get pointers operate asynchronously. The put pointer is used every time an
incoming character generates an interrupt. The get pointer is used for each
CONIN call.

The get and put pointers are only single-byte values and are more accurately
described as “relative offsets.” That is, they contain a value which, when converted
to a word and added to the base address of the buffer, will point directly to the
appropriate position inside the buffer.

By making the buffer a binary number of characters long— 32 characters, for
example —a programming trick can be used to make the buffer appear circular.
The device tables contain a mask value formed from the buffer’s length minus one
(length— 1). Whenever the get or put pointers are incremented by one (to “point”
to the next character position), the updated value is ANDed with this (length— 1)
mask. Inthis example, if the get value goes from 31 (the relative address of the last
character in the buffer) to 32 (which would be “off the end”), the masking
operation will reset it to zero (the relative address of the first character of the
buffer). This avoids having to compare pointers to know when to reset them.

It is also simpler to use a count of the number of characters in the buffer, rather
than comparing the get and put pointers, to distinguish between an empty and a
full buffer. To support different serial protocols, the driver must be able to react
when the buffer is within five characters of being full and when it drops below half
empty. Both of these conditions are much easier to detect using a simple count that
is incremented as a character is put into the buffer and decremented as a character
is retrieved from the buffer.

The count of control characters is used to deal with a class of programs that
incessantly “gobble” characters, thereby rendering any type-ahead useless. An
example is Microsoft’s BASIC interpreter. When it is interpreting a program, you
can enter a CONTROL-C from the keyboard and the interpreter will come to an
orderly stop. It does this by constantly making calls to CONST (console status). If
it ever detects an incoming character, it makes a call to CONIN to input the
character. A character that is not CONTROL-C is discarded without further ado.
Thus, any characters that are input are consumed, destroying the effect of type-
ahead.

To deal with this problem, the CONST routine shown in the example can be
told to “lie” about the console’s status. In this mode, CONST will only indicate that
characters are waiting in the input buffer if a control character is received. It uses
the control character count to determine whether there are control characters in
the buffer; this count is incremented by the interrupt service routine when it detects
one, and decremented by the CONIN routine when it gets a control character from
the buffer.

Protocol Support

In this context, a protocol is a scheme to avoid loss of data that would
otherwise occur if a device sent data faster than the receiving device could handle

Chapter 8: Writing an Enhanced BIOS 219

it. For example, protocols are used to prevent the CPU sending data out to a
printer faster than the printer can print the characters and move the paper. The
drivers also support input protocols, indicating to a transmitting device when the
input buffer gets close to being full.

Two basic methods are used to implement protocols. The first uses the control
lines found in the normal RS-232C serial interface cables. For data being output by
the computer, the data terminal ready (DTR) signal is used, and for incoming data,
the request to send (RTS) signal. These signals conform to the electrical standards
for the RS-232C interface; they are considered true when they are at some positive
voltage between +3 and +12 volts, and false when they are between —3 and —12
volts.

The second method uses ASCII control characters instead of control signals.
Two separate protocols are supported by this method. One uses the ASCII
characters XON and XOFF. Before the sending device (the computer or some
peripheral device) sends a data character, it checks to see if an XOFF character has
been received. If so, the sender will wait for an XON character. The receiving device
will only send an XON when it is ready to receive more data.

The second protocol uses the characters ETX (end of transmission) and ACK
(acknowledge). This method is normally used only when transmitting data from
the computer to a buffered printer. A message length (usually half the printer’s
buffer size) is defined. When this number of characters has been output, the
computer will send an ETX character. No further output will occur until the
computer receives an ACK character from the printer.

The example drivers support the DTR high-to-send, the XON/XOFF, and the
ETX/ACK protocols for output data. For input, they support RTS high-to-receive
and XON/XOFF.

The input protocols are invoked when the input buffer gets within five charac-
ters of being full. Then the drivers output an XOFF character or lower the RTS
signal voltage, or do both. Only when the input buffer has been emptied to 50%
capacity will the drivers send XON or raise the RTS line, or both.

As an emergency measure, if the input buffer becomes completely full, not-
withstanding protocols, the drivers will output a predetermined character (defined
in the device table) each time they discard an incoming character. This is normally
the ASCII BEL (bell) character. When you type too far ahead, the terminal will
start beeping to tell you that data is being dropped.

Forced Input into the Console Stream

All application languages provide a means of reading data from the console
keyboard. This makes the console input stream a useful gateway to the system. A
simple enhancement to the CONIN/CONST routines makes it easy to “fool” the
system into acting as if data had been input from the keyboard when in fact the
data is coming in from a character string in memory.

220

The CP/M Programmer’s Handbook

Input
Buffer

Memory
Normal Program Buffer
Get Data
CONIN ABCD
A) Forced /
Input
B 1115;10i nter Data Forced
into Console Stream
C 0-byte Terminator
/
DEF |00}
Stored String in Memory

Figure 8-3.

CONIN uses forced input data if pointer points to nonzero byte

In the enhanced BIOS, both CONIN and CONST are extended to check a
pointer in the long term configuration block, as shown in Figure 8-3.

If this pointer is pointing at a nonzero byte, then that byte is returned as though
it had come from the console keyboard. The forced input pointer is then moved up
one byte in memory. The process of forcing input continues until a zero byte is
encountered.

Forced input serves several purposes. It can be used to force a command or
commands into the system when the system first starts up. In conjunction with a
utility program, it can allow the user to enter several CP/M commands on a single
command line, injecting the characters as each of the commands is executed. It
also makes possible the features described in the next two sections.

Support of Terminal Function Keys

Many terminals on the market today have special function keys on their
keyboards. When you press one of these keys, the terminal will emit several
characters, the first of which is normally the ASCII ESC (escape) character. The
remaining one or two characters identify the specific function key that was
pressed.

For these function keys to be of any practical use, an applications program
must detect the incoming escape sequence and take appropriate action. The
problem is that not all terminal manufacturers support the ANSI standard escape
sequences.

Chapter 8: Writing an Enhanced BIOS 221

The example drivers avoid this problem by providing a general-purpose
method, shown in Figure 8-4, of detecting escape sequences and of substituting a
user-defined character string that is injected into the console input stream as
though it had been entered from the keyboard.

This scheme permits function keys to be used very flexibly, even for off-the-
shelf programs that have not been designed specifically to accept function key
input.

There is, however, one stumbling block. When an ESCAPE character is received,
the progam must detect whether this is the start of a function key sequence or the
user pressing the ESCAPE key on the terminal’s keyboard. In the former case, the

Fl

Input Buffer

Function Key Table

[A | TEXTI
[B | TEXT2
[C | DELETE

ESC

- [D | REPLACE

Forced Input
Pointer

CONIN sees ESC,
matches “[D” to table,
and sets forced input
pointer

REP

Program Input Buffer

Figure 8-4.

CONIN decodes terminal function keys

222 The CP/M Programmer’s Handbook

driver must wait to determine whether a function key string must be substituted
for the escape sequence. In the latter case, the driver must input the ESCAPE
character as it would other incoming data characters.

This recognition can only be done by moving into the time domain. When the
CONIN routine (the non-interrupt routine) gets an ESCAPE character from the
input buffer, it delays for approximately 90 milliseconds, enough time for a
terminal-generated character sequence to arrive. CONIN then checks the input
buffer to see if it contains at least two characters. If it does, the driver checks fora
match in a function key table in the long term configuration block. If the charac-
ters match a defined function key, then the string associated with the function key
will be injected into the console stream by pointing the forced input pointer at it. If
the characters do not match anything in the function key table, then the ESCAPE
and subsequent characters are handed over as normal data characters.

If after the 90-millisecond delay no further characters have arrived, the ESCAPE
character is handed over as a normal character, on the basis that it must have been
a manually entered ESCAPE character rather than part of a terminal-generated
sequence.

The example drivers show the necessary code and tables for function keys that
emit three characters. You could modify them easily for two-character sequences,
or, if you are fortunate enough to have a keyboard that uses all eight bits of a byte,
to recognize single incoming characters.

Processing Output Escape Sequences

The output side of the console driver, the CONOUT routine, can also be
enhanced to recognize escape sequences. It uses a vectored JMP instruction to
keep track of the current state of affairs. The CONOUT driver-gets an address
from the vector and transfers control to it. Normally this vector is set to direct
control to the output byte routine. However, if an ESCAPE character is detected in
the output stream, the vector is changed to transfer control to a routine that will
recognize the character following the ESCAPE. If recognition does not occur, the
driver will output an ESCAPE followed by the character that arrived after it.

If the second character is recognized, then the driver can transfer control to the
correct escape-sequence processor. This processor can then take whatever action
is appropriate. It must also make sure that when all processing is finished, the
console output vector is set to process normal output characters again.

This technique is described in more practical detail in the next section, where it
is used to preset and read the date and time. You can easily extend the recognition
tables in the long term configuration block to perform any special processing that
you need, ranging from altering the I/O redirection words to changing any other
variable in the system or programming special hardware in your computer.

Be careful not to embed any pure binary values in the sequence of characters
going out to the CONOUT routine. If you attempt to send a value of 09H (the TAB

Chapter 8: Writing an Enhanced BIOS 223

character) out via the BDOS, it will gratuitously expand the tab out to some
number of blanks. If you need to send out a bit pattern, such as the I/O redirection
word, split it up into a series of 7-bit long values. Then send it out with each byte
having the most significant bit set to 1. A value of 09H will then become 89H,
preventing the BDOS from expanding it to blanks.

Reading Date and Time From Console

For the moment, set aside the question of how the date and time get into the
system. Since the date and time are stored in the short term configuration block
(there being no need to save them from one work session to the next), all that the
BIOS needs to be able to do is recognize a request from an applications program to
read either the date or the time and then set the forced input pointer to the appro-
priate string in memory. Both the date and time strings are terminated by a LINE
FEED followed by a 00 byte.

This sequence of events is shown in Figure 8-5.

You can see that the characters “ESC d” output to CONOUT cause it to point
the forced input pointer at the date in memory. Subsequent calls to CONIN bring
the characters in the date into the program as though they were being entered on
the keyboard.

CONOUT recognizes
Esc d and goes to
date processor

ESC d

Date processor sets
forced input pointer
to date string

Forced Input
Pointer

/

10//31/82

Program Input Buffer

Memory

Figure 8-5.

Escape sequences sent to CONOUT allow the date to be read by CONIN

224 The CP/M Programmer’s Handbook

“Watchdog” Timeout on Printer

There is no provision in CP/M to deal with a hardware device that for one
reason or another is permanently unavailable. Unless special steps are taken in the
drivers, the system will screech to a halt ina loop, reading status and testing for the
peripheral to be ready.

The example enhancement code shows a scheme, using a real time clock, that
can detect when a device such as a printer fails to come ready for more than 30
seconds. On detecting this situation, the code outputs a message to all of the
console devices that are not also being used as printers. This type of output is
needed to avoid “deadly embraces” where a printer not being ready generates a
message that cannot be output because the printer is not ready.

The code that performs the timing function is known as a watchdog timer.
Each time the real time clock “ticks,” the interrupt service routine checks the
watchdog count. If the count is nonzero, it is decremented. If the watchdog timer
reaches zero, exceeding the time allowed, the drivers will display a message on the
console indicating that the printer has been busy for too long. The user then has
the option of making the printer ready and trying again to output data, ignoring
the error and carrying on, or aborting the program by doing a BDOS System Reset
(function 0).

Although sending an error message to the console sounds simple, it is compli-
cated if console output is directed to the offending printer itself. The drivers
attempt to solve this problem by sending the message only to those devices being
used as consoles and not as printers. If all consoles are being used as printer
devices as well, the driver will send the message to device 0 —normally the main
console.

Keeping Time and Date

CP/M does not have provision for keeping the current time and date in the
system. The example enhancement shows how to keep the time of day and the
current date in the short term configuration block by using escape sequences
output to the console (1) to set them to the correct values and (2) to “read” them
from the console input stream.

The example presupposes that the system has a hardware chip that can be
programmed to generate an interrupt every 1/60th of a second (16.666 millisec-
onds). This provides a divide-down counter to measure seconds elapsed. Of
course, if your computer has a true real time clock that you can read and get the
current time in hours, minutes, and seconds, your code will be very simple. You
still will need to have the clock generate a periodic interrupt, however, in order to
use the watchdog feature for timing printer and disk operations.

Actual time is kept as ASCII characters, using another ASCII control table to
determine when “carry and reset to zero” should occur. By changing two bytes in
this table, the time can be kept in 12- or 24~-hour format.

Chapter 8: Writing an Enhanced BIOS 225

The date is simply stored as a string. The example code does not attempt to
make sure that the date is valid, nor to update when midnight rolls around. This
could be done easily by the BIOS — but it would take a fairly large amount of code.

Watchdog Timer

Having a periodic source of interrupts also opens the door to building in an
emergency or watchdog timer. This is nothing more than a 16-bit counter. Each
time the real time clock interrupts, or ticks, the interrupt service routine checks the
watchdog count. If it is already at zero, nothing more happens — the watchdog is
not in use. If it is nonzero, the routine decrements the count by one. If this results in
a zero value, the interrupt service routine CALLs a predetermined address. This
will be the address of some emergency interrupt service routine that can then take
special action, such as investigating the cause of the timeout.

The watchdog routine has a non-interrupt-level subroutine associated with it.
Calling this set watchdog subroutine provides a means of setting the count to a
predetermined number of real time clock “ticks” and setting the address to which
control should be transferred if the count reaches zero.

Having called the set watchdog subroutine, the driver can then sit in a status
loop, with interrupts enabled, waiting for some event to occur. If the event happens
before the watchdog count hits zero, the driver must call the set watchdog routine
again to set the count back to zero, thereby disabling the watchdog mechanism.

The watchdog timer can be used to detect printers that are busy for too long or
disk drives that take too long to complete an action either because of a hardware
failure or because the user has not loaded the disk into the drive.

Data Structures

As already stated, each character I/O device has its own device table that
describes all of its unique characteristics.

The other major data structure is the configuration blocks — both short and
long term.

This section describes each field in these data structures.

Device Table

Figure 8-6 shows the contents of a device table. More correctly, it shows a series
of equates that define the offsets of each field in the device table. The drivers are
given the base address of a specific device table. They then access each field by
adding the required offset to this base address.

The first part of the device table is devoted to the physical aspect of the device,
defining which port numbers are to be used to communicate with it. The drivers
need to know several different port numbers since each one is used for a particular

226 The CP/M Programmer’s Handbook

The drivers use a device table for each
Physical device they service. The equates that follow
are used to access the various fields within the

Fort numbers and status bits

sDevice status port number
DT$StatussFort+1

;Device data port number
DTsDataPort+t

3O0utput ready status mask
DT$CutputsReady+1

i Input ready status mask
DT$Input$Ready+1

$1DTR ready to send mask
DTDTRReady+1

sPort number used to reset an

5 interrupt
DT$Reset$Int$Port+1

3Value output to reset interrupt
DT6ResetIntValue+l

sPart number for error detect
DT$Detect$Error$Fort+l

sMask for detecting ervor (parity etc.)
DT$DetectsErrarsValue+l

50utput to port to reset error
DT$Reset$Error$Pori+1

;Value to output to reset errar
DT$Reset$Error$Value+l

sContrel port for lowering RTS
DY$RTSsControl$Port+1

;Value, when output, to drop RTS
DT$lrop$SRTS$Value+l

31Value, when output, to raise RTS

Device logical status (incl. protocols)

DT$Raise$RTSSValue+l
sStatus bits

000080004 E sOutput suspended pending
s protocol action
Q000$0010B Input suspended until

7

s buffer empties
0000$0100B sOutput uses DTR-high-to-send
QOO0$10008 ;OQutput uses Xon/Xoff
He
30

Q001 $0000B utput uses Etx/Ack
0010%0000B utput uses Timeout
0100300008 Input uses RTS-high-to-receive

1000%GO00F s Input uses Xon/Xaff
DT$Status+] ;Secondary status byte
0000%000LB ;Requests Input$Status to
3 return “"Data Ready" when
3 control characters are in
: input buffer
DYsStatussz2+l

iNo., of chars.sent in Etx protocal
OTEtxCount+2
;Specified message length

DTEtxMessageslength+2

;Address of input buffer
DT$Euffer$Base+2

;0ffset for putting chars. into buffer
DT$FPut$s0ffset+1

s0ffset for getting chars, from buffer
DTGet0ffset+1

slength of buffer - 1

;Note: Buffer length must always be

s a binary number; e.g. 32, 44, or 128,

$This mask then becuomes:

p 32 -» 31 (0001611111

P 64 ~> &3 (OO11S$1111B)

3 128 -> 127 (0111$1111R)

¥

7

H device table.
0000 = DT#StatussPort EQU
Q001 = DT$DatasPort EQU
Q002 = DT$0utput$Ready EQU
0003 = DT$Input$Ready EQU
Q004 = DTDTRReady EQu
000s = DT#ResetsInt$Port EQU
Q008 = DT$ResetsIntsValue EQU
0007 = DT$NetectsErrorsFort EQL
Q008 = DT¢Detect$ErrordValue EQU
Q0% = DT#Reset$ErrorsPort EQU
000A = DT$Reset$ErrorsValue EQU
Q0OB = DTeRTS$ControlsPort EQU
Q0OC = DT#DropRTSValue EQU
000D = DT$RaisesRTSHValue EQu
Q00E = DT¢Status EQU
0001 = DT$0utput$Suspend EQU
Q002 = DT$Input$Suspend EQU
0004 = DT$0utput$DTR ERQu
0008 = DTs0utput$Xon EQL
0010 = DT$Qutput$Etx EQU
0020 = DT$0utput$Timeout EQU
0040 = DT$Input$RTS EQU
0080 = DT#Input$Xon EQu
000F = DY$Statuss2 EQU
0001 = DT$Fakes$Typeahead EQU
Q010 = DTSEt x$Count EQuU
Q012 = DT$Et x$Message$length eau

; Input buffer values
0014 = DT$RBuf fer$Base EQL
0014 = DTPutO0ffset EQU
0017 = DYsGet$0ffset EQU
0018 = DT#RBuf fersLength$Mask EQU

Figure 8-6. Device table equates

Chapter 8: Writing an Enhanced BIOS 227

0019

Q01A

0018

001C

001D

Q01E

3After the get/put offset has been

3 incremented it is ANBed with the mask

3 to reset it to zero when the end of

7 the buffer has been reached.
DT$CharactersCount EQU DT$Buffer$iength$Mask+1l

;Count of the number of characters

5 currently in the buffer
DT¢StopsInput$Count EQU DT$Character$Count+1

;Stop input when the count reaches

7 this value
DT#Resume$Input$Count EQU DT$Stop$Iinput$Count+t

sResume input when the count reaches

3 this value
DT$Control$Count EQU DT$Resume$Input $Count+1

sCount of the number of control

;3 characters in the buffer
DT#Functions$Delay EQU DT$Control$Count+1

tNumber of clock ticks to delay to

allow all characters after function

3 key lead-in to arrive
DT$InitializesStream EQLl DT$FunctionsDelay+1

;Address of byte stream necessary to

initialize this device

Figure 8-6.

Device table equates (continued)

function. Depending upon your hardware, each port number could be different;
however, with standard Intel or Zilog chips, you will often find that the same port
number is used for several functions. The drivers also need to know what bit
patterns to expect when they read some ports and what values to output to portsin
order to obtain particular results.

The layout of the device table and the manner in which the equates are declared
are designed to make it easy for you to change the contents of the table to meet
your own special requirements. The fields in this first section of the device table are
discussed in the sections that follow.

DT$Status$Port The driver reads this port to determine whether the hardware chip has

incoming data ready to be input to the computer or whether the chip is capable of
accepting another data character for output to the physical device.

DT$Data$Port The driver reads from this port to access the next data character from the

physical device. The driver also writes to this port to output the next data
character to the device.

If your computer hardware requires that the input data port be a different
number from the output data port, you will have to alter the coding in the device
table equates as well as make the necessary changes in the input and output
subroutines in the body of the code.

DT$Output$Ready This is the bit mask that the driver will AND with the current device

status (obtained by reading the DT$Status$Port) to see whether the device is ready
to accept another output character. It assumes that the device is ready if the result
of the AND instruction is nonzero. You may have to change some JNZ (jump

228

The CP/M Programmer’s Handbook

nonzero) instructions to JZ (jump zero) instructions if your hardware device uses
inverted logic, with bits in the status byte set to 0 to indicate that the device can
accept another character for output.

Note that this status check relates only to the output chip —it is completely
separate from the question of whether the peripheral itself is ready to accept data.

DT$Input$Ready This is the bit mask that the driver will AND with the current device
status to see if there is an incoming data character. The drivers again presume that
if the result of the AND is nonzero, then an incoming data character is waiting to
be read from the data port. You will need to make changes similar to those for the
output subroutines described in the previous section if your hardware uses
inverted logic (0 bit means incoming data).

DTSDTRSReady DTR stands for data terminal ready. It refers to one of the control lines
connected from the actual peripheral device to the 1/O chip (via several other
integrated circuits). The drivers, as an option, will only output data to the device
when the DTR signal is at a positive voltage. If the peripheral, in order to stop the
flow of data characters being output to it, lowers the DTR signal to a negative
voltage, the drivers will wait. Once DTR goes positive again, the drivers will
resume sending data. Many hard-copy devices use this scheme to give themselves a
chance to print out data received from the computer. They may have to lower DTR
for several seconds, while they perform paper movement, for example.

The value in this field is a bit mask that the drivers use on the device status to
determine the state of the data-terminal-ready control signal.

DT$Reset$Int$Port Since the input side of the drivers uses interrupts, when an incoming
character is ready to be input by the CPU, the hardware generates an interrupt
signal, and control is transferred to the interrupt service routine. This routine
“services” the interrupt by reading the incoming data character, saving it in
memory, and then transferring control back to whatever was being executed
when the interrupt occurred.

The more complicated interrupt controller chips (such as the Intel 8259A)
must be told as soon as a given interrupt has been serviced so that they can permit
servicing of any lower priority interrupts that may be waiting.

This field contains the port number that will be used to “reset” the interrupt, or
more correctly, to indicate the end of the previous interrupt’s servicing.

DT$Reset$Int$Value This is the value that will be output to the DT$Reset$Int$Port to tell
the hardware that the previous interrupt service has been completed.

DT$Detect$Error$Port Before the driver attempts to read any incoming data from the
DT$Data$Port, it checks to see if any hardware errors have occurred. It does so by
reading status from this port.

Chapter 8: Writing an Enhanced BIOS 229

DT$Detect$Error$Value The status byte that is input from the DT$Detect$Error$Port is
ANDed with this value. If the result is nonzero, the driver assumes that an error
has occurred.

DT$Reset$Error$Port If an error has occurred, the driver outputs an error reset value to
this port number.

DT$Reset$Error$Value This is the value that will be output to the DT$Reset$Error$Port
to reset an error.

DTSRTISSControl$Port The drivers use this port number to control the request-to-send line
if the RTS protocol option is selected.

DT$Drop$RTIS$Value This value is output to the RTS control port to lower the RTS line
so that some external device will stop sending data to the computer.

DT$Raise$RTS$Value This value is output to raise the RTS line so that the external device
will resume sending data to the computer.

DI$Status This is the first of two status bytes. It contains bit flags that are set to a 1 bit to
indicate the following conditions:

DT3Output$Suspend
Because of protocol, the device is currently suspended from receiving any
further output characters.

DTS$Input3Suspend
Because of protocol, the device has been requested not to send any more
input characters.

DT$Output$ DTR
The driver will maintain DTR-high-to-send protocol for output data.

DT$Output$ Xon
The driver will maintain XON/XOFF protocol for output data.

DT$Output3Etx
The driver will maintain ETX/ACK protocol for output data.

DTS Input$ RTS
The driver will maintain RTS-high-to-receive protocol for input data.

DTS Input$ Xon
The driver will maintain XON/XOFF protocol for input data.

DT§Status$2 This is another status byte, also with the following bit flag;

DT3 Fake$ Typeahead
CONST will “lie” about the availability of incoming console characters. It

230 The CP/M Programmer’s Handbook

will only indicate that data is waiting if there are control characters other than
CARRIAGE RETURN, LINE FEED, or TAB in the input buffer.

DT$Etx§Count This value is only used for ETX/ACK protocol. It is a count of the number of
characters sent in the current message. When this count reaches the defined
message length, then the driver will send an ETX character and suspend any further
output.

DIEtxMessage$length This value is the defined message length for the ETX/ACK
protocol. It is used to reset the DTEtxCount.

DT$Buffer$Base This is the address of the first byte of the device’s input buffer.

DTPutOffset This byte contains the relative offset indicating where the next incoming
character is to be “put” in the input buffer. This byte must then be converted intoa
word value and added to the DT$Buffer$Base address to get the absolute memory
location.

D1GetOffset This byte contains the relative offset indicating where the next character is
to be “got” in the input buffer.

DT$BufferS$Length$Mask This byte contains the length of the buffer minus one. The
length of the buffer must always be a binary number (8, 16, 32, 64...). Therefore,
one less than the length forms a mask value. Both the get and put offsets, after
being incremented, are masked with this value. When the offset reaches the end of
the buffer, this masking operation will “automatically” reset the offset to zero.

DT$Character$Count This is a count of the total number of characters in the buffer. It is
incremented by the interrupt service routine each time a character is placed in the
buffer, and decremented by the CONIN routine each time it gets a character from
the buffer.

CONST uses this value to determine whether any characters are available for
input.

DT$Stop$input$Count When the interrupt service routines detect that the DT$Charac-
ter$Count is equal to this value (normally buffer length minus five), the drivers will
invoke the selected input protocol, lowering RTS or sending XOFF, to shut off the
incoming data stream.

DT$ResumesinputéCount When the CONIN routine detects that the DT$Character$-
Count has become equal to this value, the drivers will again invoke the selected
input protocol, either raising RTS or sending XON to resume receiving input data.

DT$Control$Count This is a count of the number of control characters in the input buffer.
CARRIAGE RETURN, LINE FEED, and TAB characters are not included in this count.

Chapter 8: Writing an Enhanced BIOS 231

It is incremented by the interrupt service routine and decremented by CONIN.
CONST uses the count when the DT$Fake$ Typeahead mode is active; it will only
indicate that characters are waiting in the input buffer if the control count is
nonzero. ‘

DT$Function$Delay This is the number of clock ticks that should be allowed to elapse
after the first character of an incoming escape sequence has been detected. It
allows time for the remaining characters in the escape sequence to arrive, assum-
ing that these are being emitted by a terminal at maximum baud rate. Normally,
this will correspond to a delay of approximately 90 milliseconds.

DT$Initialize$Stream This is the address of the first byte of a string. This string has the
following format:
DB ppH Port number

DB nnH Number of bytes to be output
DB vvH,vvH... [Initialization bytes to be output to the specified port number

This sequence can be repeated as many times as is necessary, with a “port”
number of 00H acting as a terminator.

Disk Input/Output

The example drivers show three main disk I/O enhancements:
- Full track buffering
+ Using memory as an ultra-fast disk

+ Improved error handling.

Full Track Buffering

The 5 1/4” diskettes used in the example system are double-sided. Each side has
a separate read/write head in the disk drive. The disk controller is fast enough that,
if so commanded, it can read in a complete track’s worth of data from one side of
. the diskette in a single revolution of the diskette.
The drivers have been modified to do just this. The main disk buffer has been
dramatically enlarged to accommodate nine 512-byte sectors.
/~ In the earlier standard BIOS, CP/M was configured for tracks of 18 512-byte
Y sectors. The data from each head on a given track was laid “end-to-end” to create
the illusion of a single surface with twice as much data on it. For track buffering,
performance would be reduced if each read required two revolutions of the
diskette, and so in this BIOS the tables and the low-level driver logic have been
changed. Eachsurface is separated, with even numbered tracks on head 0, odd on
head 1.

232 The CP/M Programmer’s Handbook

The track number given to the low-level drivers serves two purposes. The least
significant bit identifies the head number. When the track number is shifted one bit
right, the result is the physical track number to which the head assembly must be
positioned.

The deblocking algorithm has also been modified by deleting references to
sectors. The code is now concerned only with whether the correct disk and track
are in the buffer. If this is true, the correct sector must, by definition, be in the
buffer. j

The deblocking code no longer takes any note when the BDOS indicates that it
is writing to an unallocated allocation block—knowledge it used to bypass a sector
preread in the standard BIOS. The track size in this enhanced BIOS is much larger
than an allocation block, and so the question is meaningless; the whole track must
be preread to write just a single sector.

This enhancement really excels when the BDOS is doing directory operations,
which always involve a series of sequential reads. The entire directory can be
brought into memory, updated, and written back in just two disk revolutions.

One point to watch out for is what is known as “deferred writes.” Imagine a
program instructed to write on a sector on track 20. The drivers will read in track
20, copy the contents of the designated sector into the track buffer, and return to
the program without actually writing the data to the disk. The program could
“write” to all of the sectors on this track without any actual disk writes. Duringall
this time, this data would exist only in memory and not on the disk drive, so if a
power failure occurred, several thousand bytes of data would be lost. Writing to
the directory is an exception. The drivers always physically write to the disk when
the BDOS indicates that it is writing to a directory sector.

In reality, the increased risk is small. Most programs are constantly reading
and writing files, so that the track buffer will be written out frequently in order to
read in another track. When programs end, they close output files. This in turn
triggers directory writes that force data tracks onto the disk.

If high security is a requirement for your computer, you could extend the
watchdog routine to include another separate timer. You could preset this timer
for, say, a ten-second delay each time you write into the track buffer but do not
write the buffer to the disk. When the count expires, it would set a flag that could
be tested by all of the BIOS entry points. If set, they would initiate a write of the
track buffer to the disk.

Using Memory as an Ultra-Fast Disk

As you can see from the preceding section, increased performance tends to go
hand in hand with increased memory requirements. This is certainly true with a
“memory disk,” commonly called a RAM-disk or M-disk. In fact, to have an
M-disk with reasonable storage capacity, your computer must have at least 128K
bytes of additional memory.

Chapter 8: Writing an Enhanced BIOS 233

Since the 8080 or Z80 can only address 64K of memory at one time, to get
access to any of this additional memory, some part of your computer’s “normal”
memory must be removed from the 64K address space and the additional memory
must be switched in. This is known as bank-switched memory.

Figure 8-7 shows the memory organization that is supported by the example
M-disk drivers.

You can see that the system has a total of 256K bytes of RAM, organized with
the top 16K, from 64K down to 48K, being “common”—that is, switched into the
address space all the time. The lower 48K can be selected from five banks,
numbered 0 to 4. Bank 0 is switched in for normal CP/M operations.

The M-disk parameter blocks describe a disk with eight “tracks,” numbered 0
to 7. The least significant bit of the track number determines whether the base
address of the track will be 0000H or 6000H. Shifting the track number right one
bit gives the bank number. Each track consists of 192 sectors. To get the relative
address of a sector within its “track,” shift the sector number eight bits left, thus
multiplying it by 128.

The M-disk is referenced by logical disk M:. A few special-case instructions are
required to return the special M-disk parameter header in SELDSK.

One problem, fortunately easily solved, is that the user’s DM A address coex-
ists in the address space with the M-disk image itself. There is no direct way to
move data between bank 0 and any other bank. The M-disk uses an intermediary
buffer in common memory (above 48K), moving data into this, switching banks,
and then moving the data down again. Figure 8-8 shows an example of this
sequence, as used when reading from the M-disk.

64K —
CPM
48K —
Trk | Trk | Trk | Trk
1 3 5 7
— 24K
Trk | Trk | Trk | Trk
0 2 4 6
Bank Number — 0 1 2 3 4

Figure 8-7.

Memory organization for M-disk

234 The CP/M Programmer’s Handbook

Intermediary
Buffer

#2: Select bank 0
move to user’s
DMA buffer

#1: Select bank 2,

User’'s DMA - Sector in M-Disk

move sector to
intermediary buffer

Bank Number — 0 2

Reading a sector from the M-disk image

During cold boot initialization, the M-disk driver checks the very first direc-
tory entry (in bank 1) to see if it matches a dummy entry for a file called “MS$Disk.”
If this entry is present, the M-disk is assumed to contain valid information. If the
entry is absent, the initialization code makes this special directory entry and fills
the remainder of the directory with 0ESH, making it appear empty. The dummy
entry makes it appear that the “MS$Disk” file is in user 15, marked System status
and Read-Only —all of which are designed to prevent its accidental erasure.

Custom Patches to CP/M

Two features shown in the enhanced BIOS, one in the CCP and one in the
BDOS, require changes to CP/M itself. These features are implemented by modify-
ing the CCP and BDOS to transfer control to the BIOS at specific points, execute a
few instructions in the BIOS, and then return to CP/M. The patches could be made
by modifying the MOVCPM program to install the changes permanently. The
changed version of MOVCPM, however, must be used with a specific version of
the BIOS. Therefore, patching CP/M “on the fly” ensures that there will be no
mismatch between the BIOS and the rest of CP/M.

Both of these patches were produced with the assistance of Digital Research.

Chapter 8: Writing an Enhanced BIOS 235

User O Files Made Public

The first change permits files created in user area 0 to be accessible from all
other user numbers. This feature comes into its own only with hard disk systems.
On a hard disk, user numbers can partition the disk, but the frequently used
utilities must then be duplicated in each user area. Allowing files in user area 0 to
be public means that these files will be accessible from all the other user numbers.
Hence the files need not be copied into each user area.

The public files feature alters the way that the BDOS performs the Search Next
function, allowing access to files declared in user area 0 even when the current user
number is not 0. However, the feature is a double-edged sword—user 0 files can be
accidentally erased or damaged as well as accessed. Therefore, user 0 files should
be declared as System status and Read-Only to protect them. As an additional
precaution, public files can be turned off by a control flag in the long term
configuration block. This flag is set to an initial state that disables public files.

Modified User Prompt
This modification makes the CCP display the current user number as well as
the default disk. For example,
38>

indicates that you are currently in user number 3, with disk B: as the default. In
addition, if you have enabled public files, the prompt is preceded by the letter “P”
to serve as a reminder:

P3B>

An Enhanced BIOS

The remainder of this chapter consists of the assembly language source code
for the enhanced BIOS described here. It is rather a daunting listing, but will be
well worth your study. The copious commentary has been written to make this
study easier, and emphasis has been placed on explaining why as well as what
things are done.

As with the standard BIOS, each line is numbered so that you can use the
functional index in Figure 8-9 to find areas of interest in the listing. Note that the
line numbers are not contiguous. They jump several hundred at the start of each
major section or subroutine. This facilitates minor changes in the listing without
revision of the functional index. The full listing is given in Figure 8-10.

236 The CP/M Programmer’s Handbook

Start Line Functional Component or Routine
00001 Introductory Comments and Equates
00200 BIOS Jump Table with Additional Private Entries
00400 Long Term Configuration Block
00800 Interrupt Vector
00900 Device Port Numbers and Other Equates
01100 Display$Message Subroutine
01200 Enter$CPM Setup
01300 Device Table Equates
01500 Device Table Declarations
01700 General Device Initialization
01800 Specific Device Initialization
02000 Output Byte Stream
02100 CONST Routine
02200 CONIN Routine with Function Key Processing
02500 Console Output
02700 CONOUT Routine with Escape Sequence Processing
02900 AUXIST—Auxiliary Input Status Routine
03000 AUXOST—Aucxiliary OQutput Status Routine
03100 AUXIN—Auxiliary Input Routine
03200 AUXOUT—Auxiliary Output Routine
03300 LISTST—List Status Routine
03400 LIST—List Output Routine
03500 Request User Choice—Request Action After Error
03600 Output Error Message
03656 Get Composite Status from Selected Output Devices
03800 Multiple Output of Byte to All Output Devices
04000 Check Output Device Logically (Protocol) Ready
04200 Process ETX/ACK Protocol
04400 Select Device Table from I/O Redirection Bit Map
04600 Get Input Character from Input Buffer
04800 Introductory Comments for Interrupt-Driven Drivers
04900 Character Interrupt Service Routine
05000 Service Device—Puts Character into Input Buffer
05300 Get Address of Character in Input Buffer
05400 Check if Control Character (not CR, LF, TAB)
05500 Output Data Byte
05700 Input Status Routine
05900 Set Watchdog Timer Routine
06000 Real Time Clock Interrupt Service Routine
06200 Shift HL Right One Bit Routine
06300 Introductory Comments for High-Level Disk Drivers
06400 Disk Parameter Headers
06600 Disk Parameter Blocks
06800 SELDSK—Select Disk Routine
07000 SETTRK—Set Track Routine
07100 SETSEC—Set Sector Routine

Figure 8-9. Functional index for listing in Figure 8-10

Chapter 8: Writing an Enhanced BIOS

237

07200 SETDMA —Set DMA Routine

07300 Skew Tables for Sector Translation

07400 SECTRAN-—Sector Translation Routine

07500 HOME—Home Disk to Track and Sector 0

07600 Equates for Physical Disk and Deblocking Variables

07800 READ—Sector Read Routine

07900 WRITE—Sector Write Routine

08000 Common Read/ Write Code with Deblocking Algorithm

08300 Move$8 Routine—Moves Memory in 8-Byte Blocks

08500 Introductory Comments for Disk Controllers

08700 Nondeblocked Read and Write

08900 M-Disk Driver

09100 Select Memory Bank Routine

09200 Physical Read/ Write to Deblocked Disks

09400 Disk Error Handling Routines

09700 Disk Control Tables for Warm Boot

09800 WBOOT—Warm Boot Routine

10000 Ghost Interrupt Service

10100 Patch CP/M for Public Files and Prompt Changes

10300 Get Configuration Block Addresses

10400 Addresses of Objects in Configuration Blocks

10500 Short Term Configuration Block

10700 Note on Why Uninitialized Buffers are at End of BIOS

10800 Cold Boot Initialization Hidden in Disk Buffer Followed by All Uninitialized Buffers
FIGURE 8-9. Functional index for listing in Figure 8-10 (continued)

(el e} | ' This 15 a skeletal example of an enhanced BIO:Z.
00010 3 It includes fragments of the standard BIDS
0Q011 H shown as Figure &é-4 in outline, so as to
00012 H avoid cluttering up the enhancements with the
00013 4 supporting substructure. Many of the original
00014 ' comment blocks have been abbreviated or deleted
00015 H entirely.
00014 :
00017 3< —— NOTE: The line numbers at the left are included
00018 B to allow reference to the code from the text,
00019 H There are deliberate discontinuities in the
00020 H numbers to allow space for expansion.
00024 3
3030 = 00022 VERSION Equ QO sEquates used in the sign-on message
3230 = 00023 MONTH EQU oz
3632 = 00024 DAY EQU T2ET
3338 = 00025 YEAR EQu - cie
00026 ¥
00027 ? *
Q0028 12 ®
00029 EE] This BIOS is for a computer system with the following *
Q0030 tA hardware configuration : =
00031 12 =
00032 (R -~ 8080 CPU »
Q0032 3 ~— &4K bytes of RAM ®
00034 IR ~= R serial 1/0 ports (using signetics 2851) for: =
00035 g console, communications and list »
00036 3 -=- Twa 5 1/4" mini floppy, double-sided, double- *
00037 % density drives. These drives use Si2-byte sectors. =
00038 X3 These are used as logical disks A: and B:, #*
00039 1A Full track buffering is supported. =
Figure 8-10. Enhanced BIOS listing

238 The CP/M Programmer’s Handbook

Q0040 1A == Two 8" standard diskette drives (128-byte sectors) *
00041 38 These are used as logical disks C: and D:. =
Q0042 yo -= A memory-based disk (M-disk) is supported. *
00043 A =
00044 3 Two intelligent disk controllers are used, one for =
00045 T each diskette type. These controllers access memory #
00044 R directly, both to read the details of the =
Q0047 ER cperations they are to perform and alsc to read *®
00048 3 and write data from and to the diskettes. =
Q0049 38 3
00050 123 =
[elelelo} B N 0 B :
00052
00053
00054 H Equates for characters in the ASCII character set
Q0055 3

0011 = 00056 XON EQU 11H ;Reenables transmission of data

0013 = 00057 XOFF EQu 13H ;Disables transmission of data

0003 = Q0052 ETX EQU 03H ;End of transmission

0006 = Q005Y ACK EQU QcH sAcknowledge

0000 = 00060 CR '‘EQU ODH sCarriage return

000A = 000481 LF EQU 0AH sLine feed

0009 = 00082 TAB EQU O9H sHorizontal tab

0007 = 00083 BELL EQU O7H 3Scund terminal”’s bell
000&4 H
00065 i
00086 H Equates for defining memory size and the base address and
00087 3 length of the system components
00048 ¥

0040 = Q00&% Memory$Size EQU &4 sNumber of Kbytes of RAM
QQQ70 H
Q0071 H The BIOS lenath must be determined by inspecticn.
00072 H Comment out the ORG BRIOS$SEntry line below by changing the first
00073 H character to a semicolon (this will make the assembler start
00074 3 the RIOS at location O). Then assemble the BIQS and round up to
00075 H the nearest 100H the address displayed on the console at the end
00076 $ of the assembly.
00077 H

2500 = 00078 BIOSSLength EQu 2500H ;<{—— Revised to an approximate valus
00079 H te reflect enhancements
Q0080 3

0800 = 00081 CCPsLength EQu Q800H sConstant

QEQQ = Q0082 BDOS$Length EQU QEOQH :Constant
00083 H

O00F = 00084 OverallsLength EQU (CCP$Length + BDOS$Length + BIOS$Length + 1023) / 1024
00085 ¥

C400 = 000848 CCP$Entry EQU (Memory$Size - OverallsLength) = 1024

CCos = 00087 BDOS$Entry EQU CCP$Entry + CCPs$Length + &

DAOCO = 00088 RIOS$Entry EQU CCP$Entry + CCP$Length + BDOS$Length
0008y H

QQO% = Q0090 BDOS EQU QOOSH sBDOS entry point (used for making
00091 3 system reset requests)
00092 H
00200 8
00201 H ORG BIOSS$Entry sAssemble code at RIDS address
00202 H
00203 3 BIOS Jjump vector
00204 H

0000 C31311 00205 JMP BOOT :Cold boot —- entered from CF/M bootstrap loader
00206 Warm$Boot$Entry: ; Labelled so that the initialization code can
00207 5 put the warm boot entry address in location
00208 3 Q00iH and 0002H of the base page

Q003 CI7S0E 00209 JMP WBOOT sWarm boot —- entered by jumping to location 000OM
00210 3 Reloads the CCP, which could have been
00211 s overwritten by previous program in transient
Q0212 3 Praogram area

0004 C3IMOI 00213 JMFP CONST ;Console status -- returns A = OFFH if there is a
00214 3 console keyboard character waiting

Q009 CIRA0R Q0215 JMP CONIN sConsole input —— returns the next console keyboard
00216 3 character in A

000C C3D703 00217 JMP CONQUT ;Console ocutput ~- outputs the character in C to
00218 s the consale device

000F C3FS04 00219 JMP LIST ;list output —- outputs the character in C to the
00220 + list device

0012 C3CEO4 00221 JMP AUXOUT jAuxiliary cutput —-- outputs the character in C to the
00222 3 logical auxiliary device

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 239

Q013 C3A104 00223 JMP AUXIN sAuxiliary input —— returns the next input character from
00224 s the logical auxiliary device in A
0018 C3160A 00225 JMP HOME ;Homes the currently selected disk to track O
001B C36309 00226 JMP SELDSK :Selects the disk drive specified in register C and
00227 s returns the address of the disk parameter header
O001E C39B0O9 Q0228 JMP SETTRK 3Sets the track for the next read or write operation
00229 ; from the BC register pair
0021 C3A109 00230 JMP SETSEC ;Sets the sector for the next read or write operation
00231 ; from the A register
0024 C3A809 00232 JMP SETDMA ;Sets the direct memcry address (disk read/write)
00233 ; address for the next read or write cperation
00234 ; from the DE register pair
0027 C3370A 00235 JMP READ sReads the previously specified track and sector from
00236 1 the selected disk inte the DMA address
002A C34BOA 00237 JMP WRITE sWrites the previously specified track and sector onto
00238 3 the selected disk from the DMA address
Q02D C3D704 Q0239 JIMP LISTST ;Returns A = OFFH if the list device{s) are
00240 s logically ready to accept another output byte
Q030 C3100A 002414 o SECTRAN ; Translates a logical sector into a physical one
00242 H
00243 H Additional "private" BIOS entry paints
00244 H
Q033 CI/F04 00245 JMP AUXIST :Returns A = OFFH if there is input data for
00246 3 the logical auxiliary device
003& C3IPRO4 0247 JMP AUXOST :Returns A = OFFH if the auxiliary davice{s) are
Q0248 s logically ready to accept another ocutput byte
0039 C3FAQ2 00249 JMP SpecificCIOInitialization
Q0250 ;Initializes character device whose device
00251 5 number is in register A on entry
Q03¢ C3shog 00252 JMP Set$Watchdos
00253 ;Sets up watchdog timer to CALL address specified
00254 3 in HL, after BC clock ticks have elapsed
QO3F C33COF 00255 JMP CB$Get $Address
00258 ;Configuration block get address
Q0257 3 Returns address in HL of data element whose
00258 3 code number is specified in C
00259 ?
Q0400 (A
00401 3 Long term configuration block
00402 H .
00403 Long$Term$CE:
00404 i
00405 H
00406 3 Public files (files in user O accessible from all
00407 3 other user numbers) enabled when this flag is set
004082 H nonzero.
00409 H
0042 00 00410 CBsPublic$Files: DE 0 sDefault is OFF
Q0411 $
00412 H
00413 H The forced input pointer is initialized tao point to the
00414 3 following string of characters. These are injected into
Q041% H the console input stream on system start-up.
00416 7
Q043 S355424D4900417 CBsStartup: DB “SUBMIT STARTUF',LF,0,0,0,0,0,0
00418 ?
00419 ; Laogical to physical device redirection
00420 H
00421 H Each logical device has a 1&-bit word associated
Q0422 H with it. Each bit in the word is assigned to a
00422 i specific physical device. For input, only one bit
00424 H can be set —- input will be read from the
00425 3 corresponding physical device. Output can be
Q0424 3 directed to several devices, so more than cane
00427 ; bit can be set.
00428 $
00429 H The following equates are used to indicate
Q0430 H specific physical devices.
00431 H
00432] 111y 14)
00433 |4 5432 1098 7654 3210)<~ Device number
0001 = 00424 DevicesO EQu 0O00$0000$000040001B
0002 = 00435 Devices! EQu Q000%$0000$0000%$001 OB
Q004 = 00434 Devices$2 EQU QO00$0000$0000$0100R
00437 H
00432 H The following words are tested by the logical
00437 3 device drivers to transfer control teo
Figure 8-10. (Continued)

240 The CP/M Programmer’s Handbook

00440 H the appropriate physical device drivers
00441 H
0058 0100 00442 CB$ConsolesInput: oW Device$0
005A 0100 00443 CB$Consolestutput: W DevicesO
00444 5
005C 0200 00445 CR$AuxiliarysInput: oW Devicest
QQSE Q200 Q0444 CBs$Auxiliary$Output: DW Device$l
00447 ;
Q080 0400 00448 CRélL.ist$Input: oW Device$2
0042 0400 00447 CE$List$Qutput: DW Device$2
00450 H
00451 H The table below relates specific bits in the
00452 H redirection words above to specific device
Q0433 3 tables used by the physical drivers
00454 H
00455 CBs¢Device¢Table$Addresses:
Q0&4 8EO2 00456 W DT$O
0086 AEQ2 00457 W DT$1
0068 CEO2 00452 oW DT$2
QQ&A 000000000004y - oW 0,0,0,0,0,0,0,0,0,0,0,0,0 sUnassigned
Q0440 H
004481 H
00442 H Device initialization byte streams
00443 ?
Q0444 H These initialization streams are cutput during the device
QQ445 ; initialization phase, or on request whenever the baud rate
00466 H needs to be changed. They are defined in the long term
004487 H configuration block so as to "freeze" their contents from one
00448 3 system startup until the next.
Q0449 i
00470 H The address of each stream is contained in each device table.
Q0471 H
00472 H The stream format is:
00473 H
00474 H OB HX sPort number (OOH terminates)
00473 H jalcl nn sNumber of bytes to cutput to port
00476 ; jals VV, V¥V, VVa. tValues to be output
00477 ;
00478 DOtInitialize$Stream: ;Example data for an 8251A chip
Q084 ED 00479 DE OEDH sPort number for G2514
0085 04 00480 ne & sNumber of bytes
0086 000000 00481 DE 0.0,0 sDummy bytes to get chip ready
0089 42 00482 DB 010080010 tReset and raise DTR
008A 6E 00483 DR Q110811610 31 stop, no parity, & bits/char,
00424 y divide down of 16
O08B 25 00485 jus Q010$0101E RTS high, enable Tx/Rx
00484 sExample data for an 2252 chip
008C DF 00487 DB ODFH sFPort number for 2253 mode
008D 01 00488 DB 1 sNumber of bytes to cutput
O08E 7¢& 00489 jO] 01$11$011$0R sSelect:
00490 H Counter 1
00491 i Load LS byte first
Q0492 H Mcode 3, binary count
Q08F [E 00493 DE ODEH sPart number for counter
Q090 02 00474 jils] 2 sNumber of bytes to cutput
00495 DO$Raud$RatesConstant: sLabel used by utilities
Q091 0700 00496 W QCO7H 19400 Baud (based on 1éx divider)
0093 00 00497 ne e} sPort number of 00 terminates stream
00498
00499 DisInitialize$Stream: ;Example data for an 3251A chip
00%4 DD Q0500 DB ODDH sPort number for S251A
Q09S Q6 00501 DB & iNumber of bytes
Q0R4 Q0Q00Q Q0502 a3 0,0,0 sDummy bytes to get chip ready
0099 42 00503 DB 010040010R tReset and raise OTR
QO%A &E Q0504 DB 01$10%11$10F 51 stop, no parity, 8 bits/char,
003035 3 divide down of 14
QO9B 28 Q0806 DR Q010$0101R $RTS high, enable Tx/Rx
QQS07
00508 sExample data for an 8253 chip
QOPC DF QOS50 DB ODFH 1Port number for 8252 mode
00RD 01 Q0810 a3 1 sNumber of bytes to output
009E Bé 00511 julc] 10811401 1$0R ;Select:
00512 H Counter 2
00513 H Load LS byte first
Q0S14 ; Mcde R, binary count
QO9F DE Q0815 ja:] QDEH jPart number for counter
QOAC 02 Q0S14 DR 2 sNumber of bytes to output

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS

241

Q0517 DisBaud$RatesConstant:
00A1 3800 00518 oW 0038H 31200 baud (based on 1éx divider)
Q0A3 00 00519 DB o] sPort number of 00 terminates stream
00520
00521 D2sInitializesStream: sExample data for an 8251A chip
00A4 DD 00522 onpR sPort number for 8251A
QOAS 0é 00523 DB é sNumber of bytes
00A& 000000 00524 DB ¢, 0,0 sDummy bytes to get chip ready
QQA® 42 00525 DB 0100%Q010R sReset and raise DTR
00AA &E 00528 DR O1%10811810R s1 stop, no parity, 8 bits/char,
00527 3 divide down of 1&
Q0AB 25 00528 DB 0010%0101B 3RTS high, enable Tx/Rx
00529
00530 sExample data for an 8253 chip
00AC DF 00531 DB ODFH sPort number for 8253 mode
00AD Ot 00532 DB 1 sNumber of bytes to ocutput
QOAE Fé 00533 DB 11%11$011%0B sSelect:
00534 H Counter 3
00535 H Load LS byte first
Q0536 H Mcde 3, binary count
QOAF DE 00537 DE ODEH sFort number for counter
Q0BO 02 00538 DB 2 sNumber of bytes to outeut
00539 D2sBaud$RatesConstant:
QOR1 3800 Q0S40 0038H 31200 baud (based on 1&x divider)
00BR3 00 00541 DB Q sPort number of 00 terminates stream
00542
00543 H .
00544 H This following table is used to determine the maximum
00545 3 value for each character position in the ASCII time
00544 H value above (except the ":"). Note —- this table is
00547 H in the long term confi?uration block sc that the clock
00548 H can be set "permanently” to either 12 or 24 hour format.
00549 ¥
00550 H NOTE: The table is processed backwards —— to correspond
00551 H with the ASCII time.
00552 H Each character represents the value for the corresponding
00553 s character in the ASCII time at which a carry-and-reset-to~zero
00554 H should occur.
Q0555 H
Q0B4 00 Q055é& [d] 7 "Terminator"
00557 CB$128$24¢Clock:
Q0BS 3334 00558 DB 34 sChange ta 23”7 for a 12-hour clock
QOB7 FF 00559 DB OFFH 3 "Skip" character
QOB8 363A Q0540 OB e sMaximum minutes are I9
QOBA FF 00561 DB OFFH $1"Skip" character
O00BBR 343A 00562 DB TR sMaximum seconds are T9
00563 Update$Time$End: sUsed when updating the time
00564 '
Q0565 H .
00566 3 Variables for the real time clock and watchdag
00567 H timer
00548 5
O0BD 3C 00562 RTC$Ticks$persSecond DB &0 sNumber of real time clock
QO%70 3 ticks per elapsed second
00BE 3C 00571 RTC$Tick$Count DB &0 sResidual count before next
00572 s second will elapse
QOBF Q000 00573 RTCs$Watchdog$Count DW] sWatchdog timer tick count
00574 3 (0 = no watchdog timer set)
00C1 0000 00575 RTCsWatchdogsAddress o] 4] sAddress to which control
00876 ; will be transferred if the
Q0577 s watchdog count hits O
00578
00579 H
00520 H Function key table
00581 H
00582 s This table consists of a series of entries, each one having the
00883 following structure:
00584 H
00585 H DB Second character of segquence emitted by
00584 H terminal’s function key
00587 H (DB Third character of sequence —- NOTE: this)
[aler=- } ¢ field will not be present if the source code)
00589 [§ has been configured to accept only two characters)
00590 3 (in function key sequences.)
Q0591 H (NOTE: Adjust the equates for:)
00592 H ¢ FunctionkeylLength)
00593 3 ¢ ThreesCharacters$Function)
Figure 8-10. (Continued)

242 The CP/M Programmer’s Handbook

00594 H
Q0595 H DB A character string to be forced into the conscle
Q0596 H input stream when the corresponding function key
Q0897 H is pressed. The last byte of this string must be
00598 H QOH to terminate the forced input.
00599 ¥
001R = 00400 Functionskeys$lead EQU 1BH ;Signals function key sequence
0003 = 00601 FunctionsKey$lenath EQU 3 sNumber of characters in functicon
ggggg : key input sequence (NOTE: this
H 2 .
00504 can only be or 2 characters)
00603 4
00408 sThe lagic associated with function
00407 + key recognition is made easier with
00408 s the following equate
0001 = 004809 Threes$Characters$Function EQU Function$keysiength - 2
00810 s Three$Character$Function will be TRUE if the
00411t 5 function keys emit a three character
Q0812 ; sequence, FALSE if they emit a two character
Q0813 7 sequence.
00614
gg:ls H Each entry in the table must be the same length, as defined by:
18 3
Q013 = 00817 CR$Function$Key$Entry$Size EQu 16 + 1 + FunctionkeyLength - 1
00818 H i * *
00619 H i H H
00620 3 Maximum length of substitute | Lead character is naot
Q&1 3 string i in table entry
00822 H Far the terminating QOH
Qo823 4
Q0424 3 The last entry in the table is marked by a QO-byte.
00625 H
00828 H The example values shown below are for a VT-100 terminal.
00627 3
00828 CR$Function$KeysTable:
00629 H 123454789.1234 S & 7 <~ Use to check length
Q0C3 4FS0487S6E00830 DB ‘07, “P*, “Functien Key 17,LF,0,0
QODR& 4F5148754E00431 bR ‘07, “Q°, "Function Key 2°,LF,0,0
QQE? AFS2447SEEQ0&32 DR “Q7,“R", “Function Key %°,LF,0,0
QOFC AFS3487S8E00833 DR “Q7, *37, “Function Key 4°,LF,0,0
00634 H
0Q&35 H 12345478%. 1
Q10F SR4158702000636 [u3 L7, A7, “Up Arrow”’,LF,0,0,0,0,0,0,0,0
0122 SB42446F 77004837 DB L, “B’,“Down Arrow’,LF,0,0,0,0,0,0
0135 SRA3ITE9E6700438 DB “CL*,“C”, "Right Arrow’,LF,0,0,0,0,0
0148 SB444Ce56600639 DR L7, DY, “Left Arrow’,LF,0,0,0,0,0,0
00640
015R 0QQQQQ000000641 ne ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 :Spare entries
016E 00QO0000000064% DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
01381 0000Q0QQ0000843 DR ,0,0,¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0124 00000QQ0C0000844 DR 0,0,0,¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
01A7 000000000000645 DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
01BA 000000000000648 OB ¢,0,0,¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Q1CD Q0000000000 0847 DB 0,90,0,0,0,0,0,¢0,0,0,0,0,0,0,0,0,0,0,0
QG1EQ 000Q00000000448 DR ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Q1F2 Q000000000 00649 ju] 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0204 0000000000850 DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
00651
0219 FFFF 00882 DB QFFH, OFFH sTerminator for utility that preprograms
Q0452 3 function key sequence
00654 H
[elel-tada] H
00458 B Console output escape sequence control table
QQ857 H
00458 H This table is referenced after a Function$Keyslead character
00659 3 has been detected in the CONOUT rcutine. The next character
006680 H to be output to the conscle is compared to the first byte
00841 B in each 3-byte table entry. If a match is found, then control
0062 H is transferred to the address following the byte that matched.
00663 H
00664 CONQUT$Escape$Table:
021B 74 00665 b jRead current time
021C 4803 00668 oW CONDUTST ime
021E 64 00667 DE “d” ;Read current date
O21F 4104 [eJelor5] ji] CONQUT$Date
0221 75 [ele7-0.52 DB e ;Set current time
0222 Spo4 00670 oW CONCUTSetTime
Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS

243

0224 65 00671 DB ‘e’ sSet current date
0225 4€E04 00672 DuW CONOUTSetDate
00473
0227 00 00674 DB Q ;s Terminator
00675 3
00476 LongéTermCBEnd:
Q0677 H
00800 38
00801 H
00802 3 Interrupt vector
00803 H
Q0804 H Control is transferred here by the programmable interrupt
Q0803 ¥ controller —— an Intel 82T%A.
00806 3)
00807 3 NOTE: The interrupt controller chip regquires that the
00808 3 interrupt vector table start on a paragraph
00809 H boundary. This is achieved by the following ORG line
0240 00810 ORG ($ AND OFFEOH) + 20H
008114 Interrupté$Vector:
00812 sInterrupt number
0240 C37808 00813 JMP RTC$Intervrupt 30 —— clock
0243 00 00814 DB 0 1Skip a byte
0244 C3EB0S Q0815 JMP Charactaersinterrupt $1 -- character 1/0Q
0247 00 00816 DB 0
0248 C3D80E 0817 JMP GhostsInterrupt 32 —— not used
0248 00 00818 DB o]
024C C3D80E 00819 MP GhostsInterrupt 33 -— not used
024F 00 00820 DB o
0250 C3D80E 00821 JMP GhostsInterrupt 34 -- not used
0253 00 Q0822 DR o]
0254 C3DSBOE 00823 JMP Ghostsinterrupt 35 -~ not used
0257 00 00824 DB o]
0258 C3D8OE 008235 JMP Ghost$Interrupt 36 == not used
02SB 00 00824 DB o]
025C C3D80E 00827 JMF Ghost$Interrupt 37 -~ not used
00828 $
00900 ¥
00901
00902 H Device port numbers and other equates
00903 H
0080 = 00904 CIOsBases$Port EqQu 80H sBase port number
00905
0080 = 0090& DOsBasesPort EQuU CIO$BasesFort sDevice O
0080 = 00907 DO$DatasPort EQU DOsBasesPort
0081 = 00908 DOsStatussPort EQU DOsBase$Port + 1
0082 = 00909 DOSMode$Port EQU DOs$Bases$Port + 2
0083 = ggg{? DOsCommand$Port EQU DOSBasesPort + 3
H
00912
0084 = 00913 DisBasesPort EQuU CIOtRasesFart + 4 sDevice 1
0084 = 00914 DisDatasPort EQU Di$Rase$Part
0085 = 00915 DisStatussPort EQU DisBase$Port + 1
0086 = 00914 DisModesPort EQU DisBase$Port + 2
0087 = Q09t7 DisCommand$Port EQU DisBase$Port + 3
00918
Q088 = 00919 D2¢Bases$Port EQU CIO$RasesPort + & ;Device 2
0088 = 00920 D2sDatasPart EQu N2sBasedPort
008 = 00921 D2¢StatussFart EQU D2sBasesPort + 1
00RA = 00922 D2%ModesPort EQU D2sBases$Port + 2
Q088 = 00923 D2¢$Command$FPort EQU D2$Base$Port + 3
00924
Q04E = 00925 D$ModesValuesl EQU 01$00411$10B
Q0928 t1 stop bit, no parity
00927 38 bits, Async. téx rate
Q03C = oQ928 DéModesValues2 ERU Q0$11%$1100B
Q0929 s T/Rx on internal clock
00930 39600 baud
Q027 = Q0931 D$Command$Value EQU Q0$100111B
Q0932 iNormal mods
00933 sEnable Tx/Rx
QO34 sRTS and DTR active
0038 = QO3S D$Ervor EQU 0011$1000B
0037 = 00936 D$ErrorsReset EQU Q081101118
00937 ;Same as command value plus error reset
0001 = 00938 D$Cutput$Ready EQU G000%0001B
0002 = Q0939 Os$Input$Ready EQU 00008001 0B
Q080 = 00940 D$DTRSHigh Eau 1000%0000B 1Note: this is actually the
Figure 8-10. (Continued)

244 1he CP/M Programmer’s Handbook

00941 ; data-set-ready pin
00942 3 on the chip. It is connected
Q0943 ;3 to the DTR pin on the cable
0027 = 00944 D$Raise$RTS EQU Q0$1$00111R ;Raise RTS, Tx/Rx enable
0007 = 00945 DEDrop$RTS EQU QO$0$00111R ;Drop RT3, Tx/Rx enable
Q0946 H
00947 d
00948 H Interrupt controller ports (Intel 825%A)
[elop 24 H
00930 H Note : these equates are placed here sc that they
009351 H follow the definition of the interrupt vector
00952 ' and thus avoid “P” (phase) errors in ASM.
00953 H
Qone = 00954 IC$OCKI $Fart EQU OD%H tOperational control word 1
ooDs = V0985 ICSOCH28Port EQu ODSH iOperaticnal control word 2
oong = Q0936 IC$QCHWI%Fort EQU OngsH sQperational control word 3
oong = Q0957 ICSICWISFOrt EQU ODSH ;Initialization control ward i
oone = 00958 IC$ICWIs$Port EQU OD%H sInitialization control word 2
00959 H
0020 = 00260 IC$EQ] EQU 20H sNonspecific end of interrupt
Q0941 i
Q056 = 00ve2 ICSICWL EQU (Interrupt$Vector AND 1110%$0000B) + OQO$10110R
Q0983 ;Sets the A7 - AS bits of the interrust
00984 3 vector address plus:
00965 H Edge triggered
00986 H 4-byte interval
Q0967 H Single 8259 in system
00968 H No ICW4 needed
000z = 00949 ICSICWZ Ecu InterruptéVector SHR 8
00970C sAddress bits A1S — A2 of the interrupt
Q0971 5 vector address. Note the interrupt
00972 7 vector is the first structure in
00973 3 the long term configuration bleock
00974
QOFC = 00978 IC$QCW1 EQU 1111$1100R sInterrupt mask
00978 tInterrupt O (clock) enabled
00977 7Interrupt 1 (character input) enabled
00978 H
01100 g
01101 H
01102 3
01103 Display$Message: sDisplays the specified message on the cansole.
01104 ;0n entry, HL points to a stream of bytes to be
01105 ;output. A OOH-byte terminates the message.
025F 7E 01106 Mav A M ;Get next message byte
0260 B7 01107 ORA A ;Check if terminator
0261 C8 01108 RZ sYes, return to caller
0262 4F 01109 MOV C,A ;Prepare for cutput
0263 ES 01110 PUSH H ;Save message pointer
0244 CDD703 1111 CALL COoNOUT sGo to main console ocutput routine
0267 E1 01112 POP H sRecaver message pointer
0268 23 01113 INX H sMove to next byte of message
0249 CISFO2 01114 JMP Display$Message ;Loop until complete message output
011195 H
01200 P H
01201 3
01202 EntersCPM: 3This routine is entered either from the cold or warm
01203 + boot code. It sets up the JMP instructions in the
01204 ; base page, and also sets the high-level disk driver’s
01205 3 input/ocutput address (the DMA address).
01206 H
0260 3EC3I 01207 MVI A, IMP ;Get machine code for JMP
Q26E 320000 Q1208 STA 0000H 1Set up JMP at location QUOOH
0271 320500 01209 STA 000SH 5 and at location OQOSH
01210 ;
0274 210300 01211 LXI H,Warm$Boot$Entry ;Get BIOS vector address
0277 220100 01212 SHLD QQO1H t1Put address at location QOQOLH
01213
Q27A 2108CC 01214 LXI H, BDOS$Entry sGet BDOS entry point address
0270 220400 01215 SHLD & 1Put address at location QO00IH
01214 H
0280 018000 01217 LXI E, 80H ;Set disk I/0 address to default
0283 CDAROY 01218 CALL SETDMA sUse normal BIOS routine
01219 H .
0288 FB 01220 EI sEnsure interrupts are enabled
0287 3A0400 01221 LDA DefaultsDisk sHandover current default disk to
028A 4F 01222 MoV C,a 3 console command processar

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 245

0288 C300C4 01223 MP CCPSEntry sTransfer to CCP
01224 H
01300 s
01301 H
01302 H Device table egquates
01303 3 The drivers use a device table for each
01304 $ physical device they service. The equates that follow
01305 3 are used to access the various fields within the
01306 s device table.
01307 i
01308 1 Fort numbers and status bits
0000 = 01309 DTsStatussPort EQU Q sDevice status port number
0001 = 01310 DTsDatasPort EQU DTsStatussFort+l
01311 sDevice data port number
0002 = 01312 DT$0utput $Ready EQU DTsDataPort+1
01313 sOutput ready status mask
0003 = 01314 OT$Input$Ready EQU DT$Qutput $Ready+1
01315 s Input ready status mask
0004 = 013168 DTDTRReady EQU DT$Input$Ready+!
01317 sDTR ready to send mask
0005 = 01318 DT$ResetsIntsPort EQU DT$DTR$Ready+1
01319 sPart number used to reset an
01320 s interrupt
0008 = 01321 DT$Reset$sIntsvValue EQu DT$ResetsInt$Port+i
01322 ;Value output to reset interrupt
0007 = 01323 DT$Detect$ErrarsPort EQu DT$ResetsInt$Value+t
01324 tPort number for detecting error
0008 = 01325 DTsDetects$ErrorsValue EaQu DTsDetect$ErrorsPort+l
01324 1Mask for detecting error (parity ete.)
Q009 = 01327 DT$Reset$ErrorsPort EQU DT$Detect$Error$Value+l
01328 ;0utput to port to reset error
000A = 01329 DT$Reset$ErrarsValue EQU DT$Reset$ErrorsPort+l
Q1330 sValue to output to reset error
O00B = 01331 DTSRTSSControlsPort EQu DT$Reset$Error$Value+l
01332 sControl port for lowering RTS
QOOC = 01333 DY$Drop$SRTS$Value EQU DTSRTS$Control$Port+l
01334 sValue, when output, to drop RTS
000D = 01335 DT$RaiseSRTS$Value EQU DT$Drop$RTS$Value+l
01336 sValue, when cutput, to raise RTS
01337 H
01338 3 Device logical status (incl. protocols)
Q00E = 01339 DT$Status EQU DT$RaisgRTSValue+l
01340 sStatus bits
0001 = 01341 DT$Output$Suspend EQU [elelelel Telolod } o} ;Qutput suspended pending
01342 3 Protocol action
0002 = 01343 DT$InputsSuspend EQu QQ00$0010B s Input suspended until
01344 3 buffer empties
0004 = 01345 DT$0utput$DTR EQU QQO0$0100B sOutput uses DTR-high-to-send
Qoo = 01344 DT$0utputsXon EQU Q000$1000B sOutput uses XON/XOFF
0010 = 01347 DTsQutput$Etx EQU 0001$0000R sQutput uses ETX/ACK
0020 = 01348 DTsQutputsTimecut Equ 0010800008 sQutput uses timeout
Q040 = 01349 DT$Input$RTS Equ 0100800008 1 Input uses RTS-high-to-receive
Q080 = 01350 DT$InputsXon EQU 1000$0GO0R ;Input uses XON/XGFF
01351 H
Q00F = 01352 DT#Statussz EQU DT$Status+t sSecondary status byte
Q001 = 01353 DT$FakesTypeahead EQu QCG00$0001B sRequests Input$Status to
01354 3 return "Data Ready" when
01355 3+ control dharacters are in
01356 3 input buffer
01357 [
0010 = 01358 DT$Et x$Count EQu DT$Statuss2+1
01359 sNa. of chars. sent in Etx protocol
0012 = 01340 DT$Et x$Messageslenath EQu DTSEtxsCount+2
01341 sSpecified message lenath
01342 H
01363 [Input buffer values
0014 = 01364 DT$Buf fer$Base EQu DTEtxMessageslength+2
01365 tAddress of Input buffer
0016 = 01366 DTPutOffset EQU DT$Buf fer$bBase+2
01367 ;0ffset for putting chars. into buffer
0017 = 013468 DT$Gets0ffset EGU DT$FPutsCifset+1
0136% s0ffset for getting chars. from buffer
0018 = 01370 DT$Buffer$LengthéMask EQU DT$GetsOffset+]l
01371 sLength of buffer -
01372 ;Note: Buffer length must always be
01373 3 a binary number; e.g. 32, &4 or 128
Figure 8-10. (Continued)

246

The CP/M Programmer’s Handbook

013274 ;This mask then becomes:
01275 P32 -> 31 (0001%1111E)
01376 564 —r £3 (QOL1%1111E)
01377 ;128 =F 127 (0111$1111E)
01378 ;After the get/put offset has been
01377 ;7 incremented, it is ANDed with the mask
01320 ;7 to reset it to zerc when the end of
01321 3 the buffer has been reached
0019 = 012ez DT$Character$Count EGU OT$BufferslLength$Mask+1
01333 iCount of the number of characters
01324 : currently in the buffer
oo1p = 013285 DT$StopsInput$Count EG DT$Character$Count+1
0133845 tStop input when the count reaches
01357 3 this value
O01E = 01388 DT$Resume$Input$Count EQU DT$Stop$Input$Count+)
01328% sResume input when the count reaches
01390 3 this value
0oL = 01371 DIT$Control$Count EQuU DT$ResumesInput$Count+1
01392 ;Count of the number of control
01392 + characters in the buffer
001D = 01394 DT$Functicn$Delay Equ Df$ControlsCount+1
01395 ;Number of clock ticks to delay to
01294 ;3 allew all characters after function
01397 3 key lead-in to arrive
Q0LE = 01392 OT¢Initialize$Stream EQL OT$Functionsbelay+1
013299 sAddress of byte stream necessary to
01400 3 initialize this device
01401
01500 4
01501 3
01502 H Device tables
01503 5.
01504 BT$0:
028E 81 01505 DB DOsStatussFort ;Status part (8251A chip)
028F 80 01508 jus] DOsDatasFart sData port
0290 M 01507 DB D$Qutput$Ready ;CQutput data ready
0291 02 Q1508 DR DéInput$Ready s Input data ready
0292 80 01509 0B DENTR$High ;DTR ready to send
Q293 DS Q1510 DR IC$QCW2%Fort sReset interrupt port (OOH is an .unused port)
0294 20 01511 jus) IC$EQI sReset interrupt value (nonspecific ECQI)
0295 81 01512 DR DO$Status$Port jDetect errar puort
0296 38 Q1513 DB D$Ervor sMask: framing, overrun, parity errors
0297 83 01514 DE DO$Command$Port sReset error port
0298 37 Q1515 DB D$ErvorsReset sReset error: RTS high, reset, Tx/Rx enable
0299 83 01514 DR DO$Command$Fort ;Drop/raise RTS port
029A 07 01517 <] DE$Drop$RTS sDrop RT3 Value (keep Tx & Rx enabled)
0298 27 01518 DR D$Raise$RTS sRaise RTS value (keep Tx & Rx enabled)
029C CO 0151% ne DT$Input$Xon + DTEInput$RTS sProtocol and status
0290 00 01520 juic] <] sStatus #2
029E 0004 01521 oW 1024 sEtx/Ack message count
Q2A0 Q004 01522 W 1024 :Etx/Ack message length
02A2 2422 01523 oW DO$Buffer :Input buffer
0ZA4 Q0 01524 DE O ;Put offset into buffer
02AS 00 01525 DB O ;Get offset into buffer
0z2Aé LF 01526 DB DOsBufferslength —1 ;Buffer length mask
02A7 00 01527 1] s} sCount of characters in buffer
Q2A8 1B 01528 DE DO$Rufferslength - S ;Stop input when count hits this value
02A%9 10 01529 oE DO$Buf ferslength / 2 jResume input when count hits this value
02ZAA 0O 01530 DR ¢ ;Count of control characters in buffer
Q2AR 0& 01531 DE & sNumber of 1&.&éms ticks to allow function
Q1532 s key sequence to arrive (approx. 70ms)
02AC 2400 01533 oW DO$InitializesStream sAddress of initialization stream
01524 i
01525 nTs1:
02AE 85 01536 DR DisStatussPort ;Status port (8251A chip)
Q2AF 24 01537 DR DisDatasPort sData port
0280 0t 01538 aic] DéOutputsReady ;Outeput data ready
02Bt 02 01539 ju: D$InputsReady s Input data ready
02B2 80 01540 DB DDTRHigh sDTR ready to send
02B3 DS 01541 B IC$OCW2sPart sReset interrupt port (OOH is an unused port)
02R4 20 01542 DB IC$EQT sReset interrupt value (nonspecific EOI)
Q2BS 89 01543 juy DisStatussPort ;Detect error port
02B& 38 Q1544 DR D$Ervor ;Mask: framing, overrun, parity errors
Q2B7 87 01545 DB DisCommand$Port ;Reset error port
02B8 37 01544 juc] D$Error$Reset sReset error: RTS high, reset, Tx/Rx enable
02B® 87 01547 DB DisCommand$Fort ;Drop/raise RTS port
02RA Q7 01548 DB D$Drop$RTS sDrop RTS value (keep Tx & Rx enabled)
Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS

247

02BB 27 01549 DR D$Raise$RTS sRaise RTS value (keep Tx & Rx enabled}
Q2BC CO 01550 DB DT$Input$Xon + DTSInput$RTS ;Protocol and status
028D 00 01551 DB] sStatus #2
02BE 0004 01552 oW 1024 sEtx/Ack message count
0200 0004 01553 oW 1024 sEtx/Ack message length
0202 4422 01554] DisBuffer s Input buffer
02C4 0Q 01555 DB o sPut offset into buffer
02Cs 00 01556 DR Qo sGet offset intc buffer
Q2C4 1F 01557 DR DisBuffersLength -1 ;Buffer lenath mask
02C7 00 01538 DB o sCount of characters in buffer
Q208 1R Q1559 DR DisBuffer$length — § ;Stop input when count hits this value
02C? 10 01560 DE Dis$Euffer$slength / 2 ;Resume input when count hits this value
02CA 00 01561 DB] sCount of control characters in buffer
Q2CR 06 01542 e & sNumber of 16.66ms ticks to allow function
01563 ;7 key seguence to arrive (approx. P0ms)
02CC 9400 01544 oW DisInitialize$Stream sAddress of initialization stream
01565 H
Q1546 3
01567 OTsz:
02CE 89 01548 DR D2$Status$Port ;Status port (8251A chip)
Q2CF a8 01369 DB D2¢DatasFort s;Data port
0200 01 01570 DB DsOutput$Ready ;Output data ready
ozn1 oz 01571 DB DeInput$Ready s Input data ready
0202 80 01572 DB DeDTR$High sDTR ready to send
0203 Da 01973 DB IC$QCW2$Port ;Reset interrupt port (OOH is an unused port)
o204 20 01574] ICSEOQI ;Reset interrupt value (nonspecific EOI)
Q205 8% 01575 DB na2$StatussPort :Detect errvor port
02D 38 Q1576 DB D$Ervror sMask: framing, overrun, parity errors
0207 8B 01577 i) D2$Command$Fort ;Reset errar port
Q208 37 01578 DR D$Error$Reset sReset error: RTS high, reset, Tx/Rx enable
02D% 8B 01579 OB D2$Command$Port ;Drop/raise RTS port
Q2DA 07 01580 DB D$DropsRTS sDrop RTS value (keep Tx % Rx enabled)
0ZDE 27 01581 De D$Raise$RTS sRaise RTS value (keep Tx & Rx enabled)
ozbC co 01582 jalc) DT$Input$Xon + DT$Input$RTS ;Protocol and status
020D 00 01583 julc] (s} Status #2
020E 0004 01524 oW 1024 sEtx/Ack message count
02E0 0004 01585 oW 1024 jEtx/Ack message length
02E2 s422 01586] D2$Buffer s Input buffer
02E4 00 01587 oE Q ;Put offset into buffer
02E3 00 01788 j0] (o} sGet offset into buffer
Q2E6 1F 01589 DB DZsBufferslLength -1 ;Buffer length mask
02E7 00 01590 DE Q sCount of characters in buffer
02E3 1B 01591 DE D2¢BuffersLength - S ;Stop input when count hits this value
02E% 10 01592 DE D2$BufferslLength / 2 j;Resume input when count hits this value
0zZEA 00 01593] 4] sCount of control characters in buffer
Q2ER 04 01594 Ju] & sNumber of 14.6é4ms ticks to allow function
01593 5 Key sequence to arrive (approx. F0ms)
OZEC A400 01594 oW Dz2¢Initialize$Stream sAddress of initialization stream
01597 H
01700 3 #
01701 i General character I/0 device initialization
01702 H
01703 H This routine will be called from the main CP/M
01704 H initialization code.
01705 3
01706 H It makes repeated calls to the specific character I1/0
Q1707 H device initialization routine.
01708 H
01709 General$CI0¢Initialization:
Q2EE AF 01710 s1Set device number {(used to access the
01711 ;3 table of device table addresses in the
01712 1 configuration block)
02EF 4F 01713 Moy C,A sMatch to externally CALLable interface
01714 GCIsNext$Device:
02FQ CDFAOZ 01715 CALL specificsCIO$Initialization sInitialize the device
02F3 3C 01716 INR A sMove to next device
02F4 FE10 01717 CPI 14 jCheck if all possible devices (¢ - 1)
02F& €8 01718 RZ 5 bhave been initialized
02F7 C3IFO02 01719 JMP GCI$Next$Device
01720 ¥
01800 H
[33:-1638 H
01802 H Specific character I/0 initialization
01803 H
01804 H This routine outputs the specified byte values tao the specified
01805 H ports as controlled by the initializaticon streams in the
Q1808 i configuration block. Each device table contains a pointar to
Figure 8-10. (Continued)

248 The CP/M Programmer’s Handbook

01807 H these streams. The device table itself is selected according
01808 3 to the device NUMBER -- this is an entry parameter for this
01809 3 routine,
01810 H This routine will be called either from the general device
Qo181 H initialization routine above, or directly by a BIOS call from
01812 B a system utility executing in the TFA.
01813 H
01814 3 Entry parameters
01815 H
01816 i C = device number
01817 H
oie1g H Exit parameters
01819 H
01820 H A = Device number (preserved)
01821 H
01822 H
01823 SpecificéCIOsInitialization: <=== BIOS entry point (private)
01824 H
Q2FA 79 Q1825 Mav A, C ;Get device number
Q2FR FS 01828 PUSH P3W ;Preserve device numbseyr
Q2FC 87 01227 ADD A ;Make device number intoe word pointer
Q2FD 4F 01828 Moy C,A
02FE 0600 01829 MVI B, 0 Make inta a word
0300 2148400 018320 LXI H,CR$DevicesTable$Addresses 302t table base
Q302 Q09 01831 DAD B sHL -> device table address
0304 SE 01832 Moy E.M ;Get LS byte
0305 23 01833 INX H
0306 56 01834 Mav o.M ;Get MS byte: DE -» device table
01835
0307 74 01838 MOV A, sCheck if device table address = O
0308 B3 01837 ORA 3
0309 CAL703 01838 Jz SCISExit sYes, device table nanexistent
Q1839
QI0C 211E0Q 01840 LXI H, DT$Initialize$Stream
Q30F 19 01841 DAD n sHL ~> initialization stream address
0310 SE 01842 Mov E.M sGet LS byte
0311 23 01843 INX H
0312 56 01844 MoV o.M ;Get MS byte
0313 EB 01245 XCHG sHL -» initialization stream itself
0214 CD190O3 01844 CALL QutputsBytesStream sO0utput byte stream to various
01847 ports
01842 i
Q1847 SCIsExit:
0317 F1 18350 POF PSW ;jRecaver user’s devirce number in C
Q318 C¢¢ 01851 RET
01852 H
Q2000 ¥
Q2001 H Qutput byte stream
02002 H
02003 ? This routine outputs initialization bytes to port
02004 H numbers. The byte stream has the following format:
02005 H
02008 : {u PRH Port number
02007 H DB nn Number of bytes to cutput
02008 H il vvH, vvH. .. Bytes to be ocutput
02009 H H
02010 H H Repeated
02011 H H
02012 H DR OOH FPort number of 0 terminates
02013 H
02014 H Entry parameters
02015 4
0206 3 HL -> Ryte stream
02017 H
02018 Qutput$BytesStream:
02019 OBStLoop:
0319 7E 02020 MOV AM 1Get port number
031A B7 02021 ORA A sCheck if OOH (terminator)
QZ1B C8 02022 RZ 3Exit if at end of stream
O31C 322503 02023 STA QRG$Fort ;Store in port number below
031F 23 02024 INX H tHL - count of bytes
0320 4E 02025 Mav C,M ;Get count
0321 23 02026 INX H sHL ~> first initialization byte
02027 ¥
02028 OBS$Next$Byte:
0322 7E 02027 MOV AM ;Get next byte
0323 23 02030 INX H sHL —> next data byte (or port number)
Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS

249

02031
0324 D3 02032 DB QuT
02033 OBS$Port:
0325 00 02034 DB (o] 3<— Set up in instruction above
0326 0D 02035 DCR C sCount down on byte counter
0327 22203 02036 JNZ QBS$Next$Byte ;O0utput next data byte
032A €C31903 02037 JMP QBRS$Loop 3Go back for next port number
02038 H
02100 2.
02101 H CONST - Console status
02102 3
02103 H This routine checks both the forced input pointer and
02104 H the character count for the appropriate input buffer.
02105 H The A register is set to indicate whether or not there
021086 H is data waiting.
02107 '
02108 H Entry parameters: none.
02109 i
02110 3 Exit parameters
02111 3
o112 H A = O00H if there is no data waiting
02113] A = OFFH if there is data waiting
02114 ¢
02115 3
02114 CONST: s <=== BIOS entry point (standard)
02117 H
0320 2AS5800 02118 LHLD CBsConsolesInput sGet redirection word
0330 1146400 02119 LXI D,CBsDevice$TablesAddresses
0333 CD&FOS 02120 CALL SelectsDevicesTable ;Get device table address
0336 ©34708 021214 JMP Gets$InputsStatus ;Get status from input device
02122 5 and return to caller
02200 (R
02201 i
02202 $ CONIN -- console input
02203 ¥
02204 H This routine returns the next character for the console input
0220% H stream. Depending on the circumstances, this can be a character
02206 H from the conscle input buffer, or from a Previously stored
Q2207 3 string of characters to be "forced"” into the input streamafor
02208 H the automatic execution of system initialization routines.
02209 t The "forced input" can come from any previously stored character
02210 H string in memory. It is used to inject the current time and date
02211 H or a string associated with a function key into the censcle
02212 3 stream. On system startup, a string of "SUBMIT STARTUF" is
02213 H forced into the console input stream to provide a mechanism,
02214 H
02215 H Normal ("unforced”) input comes from whichever physical device
02214 i is specified in the console input redirection word (see the
02217 3 configuration block).
02218 3
0339 00 02219 CONINSDelays$Elapsed: ju] (] ;Flag used during function key
02220 3 Processing to indicate that
02221 3 a predetermined delay has
02222 s elapsed
02223 H
02224 H
02225 CONIN: ;<=== BIOS entry point (standard)
02226 3 =
033A 2A8BDOF 02227 LHLD CB$Forced$Input ;Get the forced input pointer
0330 7E 02228 Mov AM sGet the next character of input
033E B7 02229 ORA A ;Check if a null
033F CA4703 02230 JZ CONINNoFI sYes, no forced input
0342 23 02231 INX H sYes, update the pointer
0343 22800F 02232 SHLD CB$Forced$Input 3 and store it back
0346 €9 02233 RET
02234 H
02235 CONIN$NoSFI sNo forced input
0347 2A5800 02236 LHLD CBsConscle$Input sGet redirection word
034A 116400 02237 LXI D,CB$Device$Table$Addresses
034D CD&FO0& 02238 CALL SelectsDevicesTable ;Get device table address
0350 CD910& 02239 CALL GetsInput$Character ;Get next character from input device
02240
02241 sFunction key processing
0353 FEIB 02242 CPI Functionskeys$iLead sCheck if first character of functicn
02243 : key sequence (normally escape)
0335 €0 02244 RNZ sReturn to BIOS caller if nat
0356 FS 02245 PUSH PSW sSave lead in character
Figure 8-40. (Continued)

250 The CP/M Programmer’s Handbook

Q357 211DOQ 02248 LXI H, DT$FunctionsDelay 3Get delay time constant for
o247 ¢ delay while waiting for subsegquent
02248 ¢ characters of function key seguence
02249 3 to arrive
035 19 02250 DAD D
Q3SR 4E 02251 MoV c,M :Get delay value
035C 0400 02252 MVI B, 0 sMake into word value
O3SE AF 02253 XRA A iIndicate timer not yet out of time
03SF 323903 02254 STA CONIN$Delay$Elapsed
0362 217B0O3 0R28% LXI H,CONIN$Sets$Delay$Elapsed ;Address to resume at after delay
0345 CD&DO8 02256 CALL SetsWatchdog ;Sets up delay based on real time
02257 5 clock such that control will be
02258 7 transferred to specified address
02259 ; after time interval has elapsed
Q2260 CONIN$Wait$forsDelay: sWait here until delay has elapsed
0348 3AIOR 022461 LDA CONIN$Delay$Elapsed ;Check flag set by watchdog routine
038R B7 oaez ORA A
034C CAS803 02263 JZ CONIN$Wait$forsDelay
02254
02265 CONIN$Check$for$Functions
QIEF 211900 022586 LXI H, DT$Character$Count sNow check if the remaining characters
02267 ¢+ of the sequence have been input
0372 19 02268 DAD]
0373 7E 02289 MOV A, M ;Get count of characters in buffer
0374 FEO2 02270 CPI FunctionKeyiength - 1
Q374 D28103 02271 JINC CONIN$Check$Function iEnough characters in buffer feor
02272 5 possible function key sequence
0379 F1 02273 PQP PSW tInsufficient characters in buffer
02274 7 to be a function key, so return
02273 s ta caller with lead character
03748 C9 02276 RET
02277
02278 H
02279 H The fallowing routine is called by the watchdog routine
02280 3 when the specified delay has elapsed.
02281 3
02282 CONIN$Sets$DelaysElapsed:
Q37B 3EFF 02283 MVI A, OFFH sIndicate watchdog timer cut of time
037D 323903 02284 STA CONIN$Delay$Elapsed
0380 C9 02285 RET sReturn to watchdog routine
02288 H
02287 5
02288 CONIN$Checks$Function:
0281 211700 02289 LXI H,DTGet0ffset t1Save the current "get pointer"
0324 19 022%0 DAD o H in the buffer
0385 7E 02291 MOV AM ;Get the pointer
038é FS 02292 PUSH PSW ;Save pointer on the stack
02293
Q387 211700 02294 LXI H,DTGet0f fset 3Check the second (and possibly third)
Q38A CDFOO7 Q2295 CALL GatsAddress$insBuffer ¢ character in the sequence
0380 46 Q2296 MOV B,M ;Get the second character
02297
02293 IF Three$CharactersFunction
Q3gE C5 Q2299 PUSH B s Save for later use
Q38F 211700 Q2200 LXI H,DTGet0f fset sRetrieve the third character
0392 CDFOO7 02301 CALL GetsAddresssinsBuffer
Q395 C1 02302 POP B ;Recaver second character
0396 4E 02303 MoV c.M sNow BC = Char 2, Char 3
02304 ENDIF
02305
0397 DS Q23046 PUSH n ;Save device table pointer
Q398 21RO0O0 02307 LXI H,CB$Function$key$Table — CB$#FunctionskeysEntrys$Size
02308 sGet pointer to function key table
02309 5 in configuration block
03%R 111300 Q2210 Lx1 0, CR$Function$Key$Entry$Size ;Get entry size ready for loop
02311 CONIN$Nexts$Function:
O39E 19 02312 iMove to next (or first) entry
O39F 7E 02313 MQV A M ;0et second character of sequence
Q3A0 B7 02314 ORA A sCheck if end of function key table
03At CAC203 Q221S Jdz CONINSNotFunction sYes ~— it is not a function key
03A4 B2 02318 cMP B sCampare secand characters
03A5 C29E0R 02317 JINZ CONIN$Next$Function 3No match, so try next entry in tabie
02318
02319 IF Three$CharactersFunction
03A8 23 Q2320 INX H sHL ~> third character
Q3A¥ 7E 02321 MOV A M ;Get third character of sequence
03AA 2B 02322 ncx H 3Simplify logiec for 2 & 3 char. seq.
Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 251

03AB B9 02323 CcHP c sCompare third characters

03AC C29EQ3 02324 INZ CONINSNext$Function :No match, so try next entry in table

O3AF 23 Q2325 INX H sWhen match found, compensate for
02328 s extra decrement
02327 ENDIF
02328

0380 23 oz329 INX H $HL => first character of substitute
Q2320 s string of characters (00-byte term.)

03B1 228DOF 02331 SHLD CB$Forced$Input ;Make the CONIN routine inject the
02332 ;3 substitute string inta the input
02332 ;7 stream
02334
02335 tNow that a function sequence has been
02336 ;3 identified, the stack must be
02337 s balanced prior to return

0zB4 D1 02338 FPOFP o] 1Get the device table pointer

03BS F1i 0233% POP PSH sDump the "get" offset value

0ZBé F1 02340 POP PSW sDump the function sequaence lead char.
02341

03B7 211900 Q2342 X1 H,DT$Character$Count sDowndate the character count

O3BA 19 022342 DAD D 5 to reflect the characters removed
02243 3 from the buffer

03BB 7E 02345 MOV AM ;Get the count

03BC Dé&O2 02348 sUI Functionkeylenath -1 ; (the lead character has already

03BE 77 02347 MoV M, A 3 been deducted)

O3BF C3I3A03 02348 JMP CONIN sReturn to CONIN processing to get
02349 s the forced input characters
02370 CONINSNot$Function:
02351 sAttempts to recognize a function key sequence
02352 3 have failed. The "get” offset pointer must be
02332 3 restored to its previous value sc that
02354 3 the character(s) presumed to be part of
02355 ;7 the function sequence are not lost.
02356

03C2 D1 02357 POP D sRecaver device table pointer

03C2 F1 Q2358 PaP PSW sRecover previous "get" offset

Q3C4 211700 02359 LXxI H, DTGet0ffset

Q3C7 19 Q2340 DAD n sHL -> "get" offset in table

o3ce 77 Q2341 MoV M. A sReset “get" offset as it was after
02382 7 the lead character was detected

Q3CY Fi 023632 POP PSW sRecover lead character

03CA C? 02364 RET sReturn the lead character to the user
02365 '
02500 8
02501 H Console cutput
02502 H
02503 3 This routine outputs data characters to the console device(s).
02504 3 It also "traps" escape sequences being ocutput tc the console,
02505 ; triggering specific actions according to the sequences.
02506 H A primitive "state-machine" is used to step through escape
02507 H sequence recognition.
02908 H In addition to cutputting the next character to all of the
02509 3 devices currently selected in the consale output redirection word,
02510 H it checks to see that output to the selected device has not been
02511 H suspended by XON/XOFF protocol, and that DTR is high if
02512 H it should be.
02513 3 Once the character has been ocutput, if ETX/ACK protocel is in use,
02514 H and the specified length of message has been output, an Etx
02515 H character ts output and the device is flagged as being suspended.
02516 H
02517 H Entry parameters
02518 H
02519 3 C = character to be output
02520 H
02521 H CONQUT storage variables
02522 3

03CR 00 02523 CONOUTSCharacter: DB (4] sSave area for character to be cutput
02524

03CC DBO3 02523 CONOUT$Processor: o CONOLIT$Normal
02526 3This is the address of the piece of
02527 3 code that will process the next
02528 :+ character. The default case is
02529 ;3 CONQUT$Normal

03CE 0000 023530 CONOUT$String$Pointers DW [+] 1This points to a string (normally
02531 3 in the configuration block) that
02532 ; 1is being preset by characters from
02533 s the conscle cutput stream

Figure 8-10. (Continued)

252 The CP/M Programmer’s Handbook

03D0 00 02534 CONOUTS$StringsLength: DB [¢] tThis contains the maximum number of
023535 i characters to be preset into a
02336 i from the console output stream
02537
02538 H
02539 H ®xx WARNING %
02540 H The output error message routine shares the code in this
02541 3 subroutine. On entry here, the data byte to be output
02542 ' will be on the stack, and the DE registers set up correctly.
02543 H
02544 ¥
02545 CONOUTOEMENntry:
0301 32CBO3 02544 STA CONQUT¢$Character ;Save data byte
0304 C3ESO3 02547 JMP CONOUTSENntry2 sHL already has special bit map
02548 H
0254% i
02550 CONOUT : == BIOS entry point (standard)
02551 ;
0307 2ACCO3 02552 LHLD CONOUTS$Processor sGet address of processor to handle
02553 + the next character tao be cutput
02554 7(Default is CONOUT$Normal)
03DA E9 Q2555 PCHL sTransfer contral to the processor
0255¢& H
02557 3
02558 CONQUT$Normal: sNormal processor for console output
O3DR 79 02559 MOV A, C iCheck if possible start of escape
030C FE1R 02560 CP1 FunctionKeyLead 3 sequence
O3DE CA1204 02561 Jz CONOUT$Escape$Found sPerhaps
02562 CONQUTS$Forceds
Q3ELl 79 02543 MoV A, C iForced output entry point
Q3E2 I2CRO3 02564 STA CONQUT$Character iNot escape sequence -- Save data byte
Q2555
Q3ES 2ASA00 02564 LHLD CB$ConsolesOutput sGet console redirection word
Q2567 H
02568 CONQUTS$Entry2: s<=== gutput error message entry point
02569 H
03E8 116400 02570 LXI D,CB$Device$TablesAddresses sAddresses of dev. tables
O3ER DS 02571 PLUSH n 3Put onto stack ready for leop
Q3EC ES 02572 PUSH H
02573
02574 CONQUTSNexts$Devices
Q3ED E1l Q2575 POP H ;Recover redirection bit map
Q3EE D1 02576 POP n ;Recover device table addresses pointer
Q3IEF CD&FO& 02577 CALL SelectsDevicesTable ;Get device table in DE
Q3F2 B7 02578 ORA A sCheck if a device has been
02579 3+ selected (i.e. bit map not all zero)
03F23 CAODO4 Q2580 Jz CONOUTS$Exit 3No, exit
03F& CS 02581 PUSH] sYes - B.. ;Save redirection bit map
Q3F7 ES oasae2 PUSH H ;Save device table addresses pointer
02583 CONOQUT$Wait:
Q3F8 CDOF0& 02584 CALL Check$Qutput$Ready ;Check if device not suspended and
02585 s (if appropriate) DTR is high
03FB CAFBO3 02986 JZ CONOUTS$Wait sNa, wait
02537
O3FE F2 02588 DI sInterrupts off to avoid
02589 ; involuntary re-entrance
O3FF 3ACBO3 02590 L.DA CONQUT$Character sRecaver the data bvte
0402 4F 025914 Mav C.A sReady for cutput
0403 CD2608 02592 CALL Output$Data$Byte ;0utput the data byte
0406 FB 02593 £l
02594
0407 CD3A0S 02595 CALL ProcessEtxProtocol sDeal with Etx/Ack protoccl
040A CIEDO3 02596 JIMP CONQUTS$Next$Device sLoop back for next device
02597
02598 CONOUTS$ExXit:
0400 3ACBO3 02599 LoA CONOUTsCharacter sRecover data character
0410 79 02600 MoV A, C sCP/M “convention™®
0411 C9 02401 RET
02602 3
02403 CONOUT$EscapesFound: sPossible escape sequence
0412 211904 02604 Lxt H, CONQUT¢Process$Escape jVector processing of next character
024605 CONOUT$Se t $Processar:
0415 22CC0O3 024608 SHLD CONQUTS$Processor ;1Set vector address
0418 C9 02607 RET sReturn to BIOS caller
Q2700 i
02701 4
02702 H Console ocutput: escape sequence pProcessing

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 253

02703 H
02704 CONOUT$Process$Escape: ;Control arrives here with character
02705 7 after escape in C
0419 211BO2 02706 H, CONOUT$Escape$Table ;Get base of recognition table
Q2707 CONOUTSNext$SEntry:
041C 7€ 02708 MoV AM sCheck if at end of table
041D B7 02709 ORA A
041E CA2BO4 02710 JZ CONQUTSNo$Match ;Yes, no match found
0421 BY 02711 CHMP Cc sCampare to data character
0422 CA3BOA 02712 Jz CONOUTS$Match ;They match
0425 23 02713 INX H sMave to next entry in table
0426 23 02714 INX H
0427 23 02715 INX H
0428 C31C04 02716 JMP CONOUT®Next$Entry ;Go back and check again
02717]
02718 CONQUT$NosMatch: sNo match found, so original
02719 3 escape and following character
02720 3 must be output
0428 CS 02721 PUSH B sSave character after escape
042C OE1B 02722 MvVI C,Functionskey$lLead 3Get escape character
0428 CDE103 02723 CALL CONOUT$Forced sOutput to console devices
0431 C1i 02724 PQP B ;Get character after escape
0432 CDE103 02725 CALL CONOUTS$Forced ;Output it, too
0272¢& H
02727 CONDUT$Set $Normal:
0435 21DBO3 02728 LX1 H, CONQUT$Narmal ;Set vector back to normal
0438 C31504 02729 JMP CONOUTSSetProcessor s+ for subsequent characters
02730 H
02731
02732 CONQUTS$Match:
043B 23 02733 INX H 3HL -> LS byte of subprocessor
043C SE 02734 MoV E,M sGet LS byte
0430 23 02735 INX H
043E 56 02736 Mav o.M ;Get MS byte
043F EB 02737 XCHG sHL -> subprocessor
0440 E9 02738 PCHL 3Goto subprocessor
02739 §
02740 CONOUTSDate: ;Subpracessor to inject current date
02741 3 into console input stream (using
02742 ;3 forced input)
0441 218FOF 02743 LX1 H,Date
02744 CONQUTSSetForced$Input:
0444 228D0OF 02745 SHLD CB$Forced$Input
Q447 C9 02748 RET sReturn to BIOSY caller
02747 3
02748 CONQUTSTime: s Subprocessor to inject time into
02749 s console input stream
0443 21990F 02750 LX1I H, TimeInASCII
0441R (34404 02751 JIMP CONOUTSetFarced$Input
02752 H
02753 CONQUTS#Set$Date: ;Subprocessor to set the date by taking
02754 3 the next 8 characters of console autput
02755 ; and storing them in the date string
044E 21A30F 02756 Lxt H,Time$Dates$Flags ;Set flag to indicate that the
04351 3IEO2 2757 MVI A,DatesSet 3 date has been set by program
0453 B& 02758 ORA M
0434 77 02759 MoV M, A
0455 3E08 027&0 MvI A8 ;Set character count
0457 Q18FOF 02781 LX1 H,Date 3Set address
045A CI4C04 02782 JMP CONQUTSSet$String$Pointer
02763 H
02764 B
02785 CONCUTSetTime: sSubprocessor to set the time by taking
02766 ¢ the next B characters of conscle cutput
02767 ;7 and storing them in the time string
045D 21A30F 02748 LXI H, Times$Date$Flags ;Set flag to indicate that the
0440 3IEO1 027¢9 MvI A, Time$Set 3 time has been set by program
0462 Bé 02770 ORA M
0443 77 02771 MoV M, A
0444 3EQ8 02772 MVI A, 8 1Set character count
0446 21990F 02773 LXI H, TimeinASCI! ;Set address
0449 C3I4C04 02774 JMP CONOUIT$Set $Strings$Pointer
02775 3
02776 CONQUTSSetStrinasPainter: sHL => string, A = count
044C 320003 02777 STA CONQUTSString$length s Save count
044F 22CE03 02778 SHLD CONQUT$String$Pointer ;Save address
0472 217804 0779 LXI H, CONOUT$Process$String ;Vector further output
Figure 8-10. (Continued)

254 The CP/M Programmer’s Handbook

0473 C31504 02780 JIMP CONQUTSSet$Processar
02781 H
02732 CONQUT$Pracess$String: sControl arrives here faor each character
027823 in the string in register C, The

02784 3+ characters are stacked intoc the
02785 7 receiving string until either a 00-byte
02784 3 is encountered or the specified number
02787 3 of characters is stacked.
0478 2ACEQX 027388 LHLD CONOUT$StringsPointer sGet current address for stacking chars
Q47R 79 02789 Mav A, C sCheck if current character is OOH
Q47C B7 02790 ORA A
Q47D CA3S04 02791 JZ CONQUT$Se t $Normal iRevert to normal processing
0430 77 02792 MGV M, A ;Qtherwise, stack character
0481 23 02793 INX H sUpdate pointer
0482 3400 02794 MVI M, OCH ;Stack fail-safe terminator
0484 22CE03 02795 SHLD CONOUT$String$Pointer ;Save updated pointer
0487 21D003 02796 LXI H, CONOUT$Stringslength ;Downdate count
04gA 35 02797 DCR M
048B CA3504 02798 JZ CONOUT$Se t $Narmal ;Revert to normal processing
02799 5 if count hits ©
048E C9 02800 RET sReturn with ocutput vectaored back
02801 s to CONOUT#Pracess$String
02802 H
02900 4
02901 ;
02902 H Auxiliary input status
02902 H
02904 3 This routine checks the character count in the
Q2905 H appropriate input buffer.
02906 H The A register is set to indicate whether or not
02907 B data is waiting.
02903 §
02909 H Entry parameters: none.
Q2910 H
02911 H Exit parameters
02912 i
02913 H A = Q00H if there is no data waiting
02914 H A = OFFH if there is data waiting
029135 H
02914 H ==
02917 AUXIST: s {=== BIOS entry point (Frivate)
02918 H
Q48F 2ASCOO (=23 5 LHLD CR#Auxiliary$lnput ;Get redirvection word
0492 118400 02920 LXI D,CBsDevice$TablesAddresses 3 and table pointer
0495 ChaF06é 02921 CALL SelectsDevicesTable 1Get device table address
0498 C34708 oavaz JIMP GetsInput$Status ;Get status from input device
02923 3 and return to caller
02924 H
02000 4
03001 H
QR002 H Auxiliary output status
03003 H
Q2004 H This routine sets the A register to indicate whether the
03005 H Auxiliary device{(s) is/are ready to accept output data.
02006 H As more than one device can be used for auxiliary output, this
03007 H routine returns a Boolean AND of all of their statuses.
03008 H
03009 H Entry parameters: none
Q3010 H
03011 H Exit parameters
03012 H
03013 H A = Q00H if one or more list devices are not ready
03014 3 A = OFFH if all list devices are ready
Q03015 H
03014 H
02017 3 ==
03018 AUXOST: ;<=== RIOS entry point (Frivate)
03019 ¥
049B 2ASEQO 03020 LHLD CRsAuxiliaryslutput sGet list redirection word
04%E CR37905 03021 IMP Get$CompositesStatus
03022 H
03100 3 8
03101 §
03102 H Auxiliary input (replacement for READER)
03103 H
02104 H This routine returns the next input character from the

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS

255

03105 3 appropriate leogical auxiliary device.
03108 H
03107 H Entry parameters: none.
03108 3
03109 H Exit parameters
03110 4
03111 H A = data character
03112 H
03113 H
03114 AUXIN: ;1 <{=== BIOS entry point (standard)
03115 H
04A1 2ASC00 03118 LHLD CB%Auxiliarysinput 36et redirection word
04A4 114400 03117 LX1 D,CB$Devices$TablesAddresses 3 and table pointer
04A7 CD&FOS 03118 CALL Select$DevicesTable ;Get device table address
04AA C29104 03119 JMP GetsInputsCharacter 3Get next input character
03120 3 and return to caller
03124 H
03200 i
03201 H Auxiliary output (replaces PUNCH)
03202 H
03203 ; This routine ocutputs a data byte to the auxiliary device(s).
03204 H It is similar to CONOUT except that it uses the watchdog
03205 H timer to detect if a device stays busy for more than
03208 H 30 seconds at a time. It ocutputs a message to the consale
03207 H if this happens.
03208 H
03209 H Entry parameters
03210 H
03211 H C = data byte
03212 H
04AD QDOAQ7417503213 AUXQUTS$Busy$Message: ju) CR,LF,7, Auxiliary device not Ready?”,CR,LF,0
03214 H
Q3215 H
03216 AUXOUT: ;<=== BIOS entry point (standard)
03217 3
O4CE 2ASEQO 03218 LHLD CBsAuxiliarysOutput 3Get aux. redirection word
04D1 11AD04 03219 Lx1 D, AUXOUT$Rus y$Message sMessage to be output if time
03220 $ runs out
0404 C3A20% 3221 JIMP MultiplesOutput$Byte
03222 H
033200 i ¥
03301 H
03302 H List status
03203 4
03204] This routine sets the A register to indicate whether the
03305 1 List Device(s) is/are ready to accept output data.
Q3306 H As more than cne device can be used for list output, this
03307 H routine returns a Roclean AND of all of their statuses.
03308 5
03309 H Entry parameters: none
03310 H
03311 3 Exit parameters
03312 H
03313 3 A = Q00H if one or more list devices are not ready
03314 i A = OFFH if all list devices are ready
03315 H
03316 4
03317 i
03318 LISTST: ;<=== BIOS entry point (standard)
03319 3
04D7 2A4200 03320 LHLD CB$List$0utput 1Get list redirection ward
040A C37905 03321 JMP Get#CompositesStatus
03322 ;
03400 s#
03401 H List output
03402 H
03403 s This routine outputs a data byte to the list device.
03404 H It is similar to CONOUT except that it uses the watchdog
03405 H timer to detect if the printer stays busy for more
03406 H than 30 seconds at a time., It outputs a message to the console
03407 H if this happens.
03408 H
03409 H Entry parameters
03410 ¥
03411 1 ¢ = data byte
03412 H
Figure 8-10. (Continued)

256 The CP/M Programmer’s Handbook

040D ODOAQ7S07203413 LIST$Busy$¥Message: jatd CR,LF,7, “Printer not Ready? ,CR,LF,Q
03414 3
03415 H
034168 LIST: ;=== BIOS entry point (standard)}
03417 3
Q4FS 2A&200 03418 LHLD CB$ListsQutput ;Get list redirection word
Q4F8 11DD0O4 03419 LXI D, LIST$RusytMessage 3Message to be output if time
03420 3 runs out
O4FR C3A208 03421 JIMP Multiple$Qutput$Byte
03422 H
03500 i #
Q3501 H Request user choice
03502 s
Q3502 H This routine displays an error message, requesting
03504 3 a chaoice of:
03505 H
03504 3 R == Retry the operation that caused the errcr
Q3507 3 I -- Ignore the error and attempt to continue
03308 H A -— Abort the program and return to CP/M
03509 3
03510 H This routine accepts a character from the console,
03511 H converts it to uppercase and returns to the caller
03512 H with the response in the A register.
Q3513 3
03514 RUC$Message:
04FE ODOA 03515 DB CR,LF
0S00 202020202003516 DB . Enter R - Retry, I ~ Ignore, A - Abort : ~,0
03517 5
03918 3
03519 Requests$User$Choices
0S2F CD2D03 03520 CALL CONST ;Gobble up any type-ahead
0532 CA3BOS 03521 Jz RUCSRuffersEmpty
Q535S CDIAOR Q3522 CALL CONIN
0538 C32F0S 03523 JMP Requests$tisers$Choice
03524
03525 RUC$Buf fer$Empty: .
053B 21FEO4 03526 LXr H, RUC$Message tDisplay prompt
OS3E CDS305 03527 CALL Output$Error$Message
03528
03541 CDIAO3 03529 CALL CONIN ;Get console character
0544 CDIBOE 03330 CALL ASTaosUpper sMake uppercase for comparisons
0547 2WIBOOD 03531 STA Disk$ActionsConfirm ;Save in confirmatory message
054A FS 0383z PUSH PSW 1Save for later
03533
0S54R 21R0O0OD 03534 LXI H,Disk$ActionsCanfirm
QS4E CDSI0OS Q3535 CALL Cutput$ErrorsMessage
03536
0551 F1 03537 PQOP PSW sRecaver action code
0552 C? 03538 RET
Q3539 H
03800 s #
03801 ;
03602 H Cutput error message
03603 ?
Q3804 H This routine outputs an error message to all the currently
0605 3 selected conscle devices except those being used to receive
03606 3 LIST ocutput as well. This is to avoid "deadly embrace” situaticns
Q3807 H where the printer-s being busy for too long causes an error message
03408 H to be output —— and console output is being directed to the
0360% H printer as well.
03610 H
03611 H This subroutine makes use of most of the CONQUT subroutine.
0812 3 For memory economy it enters CONOUT using a private
03813 H entry point.
03614 H
03615 H Entry parameters
03818 H
03617 H HL —-> 00-byte terminated error message
03818 H
03819 Qutput$ErrorsMessage:
0553 ES 0R&620 PUSH H ;Save message address
0554 2A5A00 03421 LHLD CR$ConsolesOutput 1Get console redirection bit map
0557 EB 03822 XCHG
0558 244200 0623 LHLD CB$Lists0utput ;Get list redirecticn bit map
03624 sHL = list, DE = console
03625 ;Now set to O all bits in the console
Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS

03826 3 bit map that are set to 1 in the
03827 3 list bit map
0358 7C 03628 MoV AH sGet MS byte of list
055C 2F 03829 CMA s Invert
OSSDh A2 03430 ANA D sPreserve only bits with 0°s
OSSE 67 03631 MoV H,A sSave result
O8%F 7D 03432 MoV AL jRepeat for LS byte of list
0560 2F 03633 CMA
0361 A2 03634 ANA E
0562 &F 03435 Mov L.A sHL now has only pure console
03836 5 devices
0563 B4 03837 ORA H sEnsure that at least one device
0584 CASA0S 03438 Jz OEM$Device$Present s is selected
0547 210100 03639 LX1 H, 0001H ;Othervise use default of device O
03640 OEM$Device$Present:
03441 CEMS$Next$Character:
056A D1 03442 POP D sRecover message address into DE
0S4B 1A 03543 LDAX n 1Get next byte of message
0S4C 13 03844 INX D ;Update message pcinter
056D B7 03845 ORA A sCheck if end of message
056E C8 03646 RZ sYes, exit
056F DS 03647 PUSH D sSave message address for later
0570 ES 03648 PUSH H N ;Save special bit map
03449 sData character is in A
0571 CDD103 03650 CALL CONQUTSOEM$Entry sEnter shared code
0574 El 03651 POP H sRecover special bit map
03575 C36A05 03652 JMP OEMSNext$Character
03633 H
03454 H
03655 ¥
03656 H Get composite status
03657 H
03658 H This routine sets the A register to indicate whether the
03659 H output device(s) is/are ready to accept output data.
03660 H As more than one device can be used for output, this
036461 3 routine returns a Boolean AND of all of their statuses.
03662 ?
03663 3 Entry parameters
03664 H
03845 3 HL = 1/0 redirection bit map for output devicels)
03886 H
036467 3 Exit parameters
03658 ?
03649 H A = O00H if one or more list devices are not ready
03670 4 A = OFFH if all list devices are ready
03671]
0578 00 03872 GCSeStatus: DB (o] sComposite status of all devices
03473 4
03674 ?
03875 GetsCompositesStatus:
0579 3EFF 03476 A, OFFH tAssume all devices are ready
QS7B 327805 03877 STA GCSsStatus ;Preset composite status byte
03678
0S7€ 114400 03879 LX1I LD, CBsDevicesTablesAddresses 3Addresses of dev. tables
0881 DS 03680 PUSH D ;Put onto stack ready for locp
0582 ES 03681 PUSH H ;Save bit map
03682 GCS$Next$Device:
0583 £t 03483 POP H yRecover redirection bit map
0%584 D1 03684 POP D sRecover device table addresses pointer
03585 CD&FO& 03485 CALL Select$DevicesTable ;Get device table in DE
0588 B7 03686 ORA A $Check if a device has been
03487 3 selected (i.e. bit map not all zero)
0589 CAY90S 03488 Jz GCS$Exit sNo, exit
058C CS 03689 PUSH B :Yes - B.. sSave redirection bit map
058D ES 03490 PUSH H sSave device table addresses pointer
OS8E CDOFO0& 03691 CALL Checks$Output$Ready sCheck if device ready
0591 217805 03492 LXI H,GCS$Status sAND together with previous devices
0594 AS 03693 ANA M s status
o595 77 03694 MoV M, A sSave composite status
034695
0594 C3830% 03496 JMP GCSeNextsDhevice sLoop back for next devirce
03497 1
03498 BGCS$Exit:
0599 3A780% 03699 LDA GCSsStatus sReturn with composite status
039C B7 03700 ORA A
o3%D C9 03701 RET
Figure 8-10. (Continued)

257

258 The CP/M Programmer’s Handbook

03702 H
03800 ¥
03801 H
03802 H Multiple output byte
03803 H
03804 H This routine cutputs a data byte to the all of the
03805 H devices specified in the I/0 redirection ward.
03806 H It is similar to CONQUY except that it uses the watchdog
03807 3 timer to detect if any of the devices stays busy for more
03808 H than 30 seconds at a time. It outputs a message to the console
03809 H if this happens.
03810 H
03811 3 Entry parameters
0312 §
03813 H HL = 1/0 redirection bit map
03814 H DE -> Message to be output if time runs out
03815 H C = data byte
03816 H
Q708 = Q3817 MOB$Maximum$Busy EQu 1800 :Number of clock ticks (each at
o318 3 16.666 milliseconds) for which the
03819 ;3 device might be busy
059E 00 03820 MOB$Character: DB o] sCharacter to be ocutput
O59F 0000 03821 MOBS$Busy$Message: W 0 tAddress of message to be
3822 3 output if time runs out
05Al1 Q0 03823 MOBR$Need$Message: DB (o] sFlag used to detect that the
Q3824 3 watchdeg timer timed out
03828 5
Q3824 Multiple$Cutput$Byte:
05A2 79 03827 MOV A,C ;Get data brte
0SA3 320807 03328 STA MOB$Maximum$Busy ;Save copy
0SA& EB 03829 XCHG sHL ~> timeout message
0SA7 229F00 03830 SHL.D MOBR$Busy$Message ;Save for later use
0SAA EB 03831 XCHG sHL = bit map again
03832
Q5AR 114400 03833 LXI D,CB$Device$TablesAddresses sAddresses of dev. tables
OSAE DS 03834 PUSH] ;Save on stack ready for loup
O5AF ES 02835 PUSH H sSave 1/0 redirection bit map
03836 MOBSNext$Device:
0SBO E1l 03837 PO H sRecover redirection bit map
0SB1 D1 03838 POP D 3sRecover device table addresses pointer
0SB2 CDEF0& 03239 CALL Select$DevicesTable ;Get device table in DE
OSBS R7 03840 ORA A 3Check if any device selected
05BRé CAECOS 03841 Jz MOB$Exit
03842
QSBY CS 03843 PUSH B 3¢~ Yes : B ;Save device table addresses pointer
QSBA ES 03844 PUSH H ;Save redirection bit map
03R45 H
03844 MOB#StartsWatchdog:
OSBR AF 03847 XRA A ;Reset message needed flag
OSRC 32A105 03848 STA MOB$Need$Message
O3BF 010807 03849 LXI B, MOB$Maximums$Busy sTime delay
Q5C2 2109068 03850 LX1 H, MOB$Not $Ready sAddress to go to
QSCS CD&Do8 03851 CALL Sets$Watchdog sStart timer
03852
Q3353 MOB$Wait: *
OSCR 3AAL0S 03854 LDA MOB$Need$Message ;Check if watchdog timed cut
0SCR B7 03855 ORA A
0SCC C2EEQS 033%& JINZ MOB$QutputsMessage sYes, output warning message
0SCF CDOFO06 03857 CALL Check$Qutput $Ready sCheck if device ready
0SD2 CACS0% 03858 Jz MOB$Wait iNo, wait
03859 H
o503 F2 03840 DI sInterrupts off to avoid
038481 3 involuntary reentrance
05Dé 010000 03842 LXI B,0 3Turn of f watchdog
0SD? Chenoe 03843 CALL SetsWatchdog 3 (HL setting is irrelevant)
03864
05DC IAFEQS 03865 LDA MOB$Character ;Get data byte
O5DF 4F 038688 Mav C,A
OSEQ CD2408 03847 CALL Qutput$bDatasByte sOQutput the data brte
OSE3 FB 03868 EX
O5E4 CD3A0E 03849 CALL ProcessEtxProtocol sDeal with ETX/ACK protocaol
0SE7 C3BOOS 03870 JMP MOB$Next$Davice
03871 3
03872 MOB$IgnoreSExits: sIgnore timeout error
QSEA E1L 03873 POP H sBalance the stack
OSEB Di 03874 POP <]
Figure 8-40. (Continued)

Chapter 8: Writing an Enhanced BIOS

259

03875 §
03876 MOBSExit:
OSEC 79 03877 MoV A,C ;CP/M “convention"
05eED C9 03878 RET
03879 5
03880 MOB$Output$Message:
QSEE 2A%FO0S 03881 LHLD MOB$Busy$Message ;Display warning message
OSF1 CD330S 03882 CALL Qutput$ErrorsMessage 3 on selected console devices
03883 MOB$Request$Choice:
QOSF4 CDRFOS 03834 Request$UsersChoice sDisplay message and get
03885 3 action character
0SF7 FES2 03884 CPI ‘R sRetry
O5F9 CABBOS 03887 Jz MOBsStart$Watchdog iRestart watchdog and try again
QOSFC FE49 03888 CP1 ‘17 $ lanore
OSFE CAEAOS 03889 Jdz MOB$Ignore$Exit
0401 FEA1L Q3990 CP1 A sAbort
0403 CA340E 03891 Jz System$Resat 3 Give BDOS function O
0606 C3FA0S 03892 JMP MOB$Requests$Choice
03893 H
03894 MORNotReady: 1Watchdeg timer routine will call this
03895 $ routine if the device is busy
03896 3 for more than approximately 20 seconds
03897 sNote: This is an interrupt service routine
0409 3EFF 03898 MVI A, OFFH iSet request to ocutput message
0460B 32A105 03899 sSTA HDBQNG’H’“!SSBQG
Q80E C9 03700 RET sReturn to the watchdog routine
03901 H
04000 e
04001 H Check ocutput ready
04002 §
04003 H This routine checks to see if the specified device is ready
04004 H to receive ocutput data.
04005 3 It does so by checking to see if the device has been suspended
04004 3 for protecol veascons and if DTR is low.
04007 §
04008 | NOTE: This routine does NOT check if the USART itself is ready.
04009 H This test is done in the ocutput data byte routine itself.
04010 H
04011 B Entry paramaters
04012 ¥
04013 3 DE -> device table
04014 H
04015 H Exit parameters
04014 H
04017 3 A = 000H (Zero-flag set) : Device not ready
04018 H A = OFFH (Zero-flag clear) : Device ready
04019 3
04020 Check$Qutputs$Ready:
040F 210E00 04021 LX1I H,DT¢Status ;Get device status
0812 19 04022 DAD D sHL ~> status byte
Q413 7E 04023 MOV AM 3Get status byte
0414 47 04024 Mav B.A sTake a copy of the status byte
0615 E&Q1L 04025 ANI DT$0utput$Suspend ;Check if output is suspendad
0617 C23804 04024 JNZ CORNotReady sYes, indicate not ready
04027
051A 3E04 04028 MVI A, DT$0utput$DTR sCheck if DTR must be high to send
081C AQ 04029 ANA B sMask with device status from table
061D CAR408 04030 Jz COR$Ready sNo, device is leogically ready
04031
0620 210000 04032 LX1 H,DT$StatussPort ;Set up tao read device status
0423 19 04033 DAD D
0624 7E 04034 MOV AM ;Get status port number
0425 322908 04035 STA CORs$StatussPort 3Set up instruction below
04038
0428 DB 04037 IN
04038 CORsStatus$Port:
0629 00 03039 DB [s] 3{-— Set up by instruction above
062A 4F 04040 mov C,A ;Save hardware status
04041
0628 210400 04042 LX1 H, DTDTRReady iYes, set up to check chip status
Q62E 19 040423 DAD n 3 to see if DTR is high
082F 7E 04044 MoV AM 1Get DTR high status mask
0630 Al 04045 ANA C ;Test chip status
0631 CA3804 04044 Jz COR$Not $Ready sDTR low, indicate not ready
04047 3
04048 COR$Ready:
Figure 8-40. (Continued)

260 The CP/M Programmer’s Handbook

0634 3IEFF Q4049 MvVI A, OFFH sIndicate device ready for ocutput
0636 B7 04050 ORA A
Q637 C9 04051 RET
04052 H
04053 CORNotReady: 1 Indicate device not ready for output
0638 AF 04054 XRA A
0639 C9 04055 RET
04054 H
04200 i
04201 H
04202 H Praocess ETX/ACK protocol
04203
04204 3 This routine maintains ETX/ACK protocol.
04205 H After a specified number of data characters have been output
04206 H to the device, an ETX character is output and the device
04207] put into cutput suspended state. Only when an incoming
04208 H ACK character is received (under interrupt control) will
04209 H output be resumed to the device.
04210 '
04211 H Entry parameters
04212 H
04213 H DE -> device table
04214 *
04215 H Exit parameters
04216 3
04217 H Message count downdated (and reset if necessary)
04218 3
04219 Process$Et x$Pratacal:
0&43A 210E00 04220 LXI H,DT$Status sCheck if ETX/ACK protocol enabled
063D 19 04221 DAD D
043E 7€ 04222 MOV AM
083F E610 04223 ANI DT$OutputsEt x
0441 C8 04224 RZ . iNo, so return immediately
0442 211000 04225 LXI H, DT$SEt x$Count 1Yes, so downdate count
0645 19 04224 DAD D
0846 ETI 04227 PUSH H s1Save address of count for later
0647 4E 04228 MoV c,m iGet LS byte
0648 23 04229 INX H
04649 46 04230 Moy E,M ;Get MS byte
044A OB 04231 DCX B
064B 78 04232 MoV AR
-064C B1 04233 ORA c sCheck if count now zerao
044D C25706 04234 JINZ PEP$Saves$Caount 3 N
0450 211200 04235 LXT H,DTEtxMessageslLength sYes, reset to message length
0653 19 04236 DAD D
0454 4E 04237 MOV c,M sGet LS byte
0655 23 04233 INX H
0656 46 04239 MoV B, M ;Get MS byte
04240 PEP$Saves$Count:
0657 E1 04241 PQOP H sRecover address of count
0658 71 04242 MoV M. C ;Save count back in table
0659 23 04243 INX H
0&SA 70 04244 Mav M, B
04245 H
0458 R7 04245 QRA A sReestablish whether count hit O
045C CO 04247 RNZ sNo, no further processing required
045D OEQ3 04248 MVI C,ETX i1Yes, send ETX to device
Q&SF F3 04249 DI ;Avoids inveluntary reentrance
0640 CD2608 04250 CALL OutputsDatas$Byte
0863 FR 04251 EI
0444 21QEQQ 04252 LX1 H,DT$Status 3Flag device as output suspended
0887 19 04252 DAD n
0488 F3 04254 DI sAvoid interaction with interrupts
0669 7E 04255 MOV AM ;Get status byte
086A F&OL 04254 ORI DT$0utput $Suspend ;1Set bit
0&6C 77 04257 Mav M, A 1Save back in table
0s&D FB 04258 EI
Q&&E C9 04259 RET
04240 H
04400 8
04401 B
04402 H Select device table
04403 H
034404 H This routine scans a 1&6-bit word, and depending on which is the
044305 H first 1-bit set, selects the corresponding device table address.
04406 H

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS

261

04407 H Entry parameters
04408 H
0440% H HL = Bit map
04410 H DE -» Table of device table addresses
04411 H The first address in the list is called
04412 H if the least significant bit of the bit map is
04413 H naonzero, and so on.
04414 4
04415 H Exit parameters
04418 H
04417 5 BC -> Current entry in device table addresses
04418 H DE = Selected device table address
04419 3 HL = Shifted bit map
04420 7 Nonzero if a 1-bit was found
04421 ¥ Zera if bit map now entirely 0000
04422 5
04423 H Nbte: If HL is QO00OH on input, then the first entry in the
04424 H device table addresses will be returned in DE.
04425 H
04426 SelecttDevice$Table:
Q66F 7C 04427 MoV AH 3Get most significant byte of bhit mae
0670 BS 04428 ORA L sCheck if HL completely O
0671 C8 04429 RZ ;Return indicating no more bits set
0&72 7D 04430 Mov AL iCheck if the LS bit is nonzera
0673 EG01 04431 ANI 1
0675 C28008 04432 JINZ SDTHBit$Set sYes, return corresponding address
0s78 13 04433 INX D sNo, update table painter
0679 13 044324 INX D
067A CDDBOS 04435 CALL SHLR 3Shift HL right one bit
047D C36F04 04436 JMP Select$Device$Table sCheck next bit
04437 SDT#Bits$Set:
0680 ES 04438 PUSH H 1Save shifted bit map
0681 42 04439 MoV EB.D ;Take copy of table pointer
0682 4B 04430 MOV C,E
0683 EB 04441 XCHG ;HL -> address in table
0584 SE 04442 Moy E.M
0685 23 04443 INX H
0886 S6 04444 MoV D,M $DE ~> selected device table
04445 ;Set up registers for ancother
Q4445 ; entry
0687 E1l 04447 POF H sRecover shifted bit map
0428 CDDBOZ 04448 CALL SHLR 38hift bit map right one bit
0s8B 03 04449 INX B sUpdate DT address table pointer to
0&8C 03 04450 INX B 3 entry
0680 2EO01L 044351 MV1 Al ;1 Indicate that a one bit was found
0&8F B7 04452 ORA A ; and registers are set up correctly
0690 C¥ 04453 RET
04454 H
04600 i #
04601 H
04602 H Get input character
04403 H
04404 H This routine gets the next input character from the device
04805 L specified in the device table handed over as an input
045606 H parameter.
04607 ;
044608 Get$Input$Character:
0491 211900 0440% LXI H, DT$Character$Count jCheck if any characters have
0694 19 045810 DAD D 3 been stored in the buffer
03611 GIC$Wait:
0495 FB Q4612 EI sEnsure that incoming chars. will
04613 5 be detected
0696 7E 044614 MoV A M sGet character count
0697 B7 04415 ORA A
0698 CA930& 044816 JZ GICsWait iNo characters, so wait
049B 3T 04617 DCR M sDown date character count for
04418 ;5 the character about to be
04419 3 removed from the buffer
069C 211700 04420 LXI H,DT$CGets0ffset sUse the get offset to access
04%F CDFQO7 04421 CALL Get$Address$in$Buffer sReturns HL -> character
04422 3 and with get offset updated
06A2 7E 04423 Mav AM sGet the actual data character
08A3 FS 04424 PUSH PSW ;Save until later
04425
06A4 211900 04626 LXI H,DT$Characters$Count sCheck downdated count of chars. in
04A7 19 04427 DAD n ; buffer, checking if input should be
Figure 8-10. (Continued)

262

The CP/M Programmer’s Handbook

04920
0702 11CEQ2 04921 LXI D,DT$2 sDevice 2
0705 CD1&07 04922 CALL Services$Device
04923
0708 3E20 04924 MvI A, IC$EOQI ;Tell the interrupt controller chip
070A D308 04925 ouT IC$OCW2$Port 3 that the interrupt has been serviced
Q70C ™ 04925 POP D sRestore registers
Q70D C1 04927 POP B
Q70E F1 04928 PQF P3W
Q70F 2AR8322 04929 LHLD PlsUser$Stack ;Switch back to user’s stack
0712 F9 04930 SPHL
0713 E1 04931 FOP H
0714 FB 04932 EX ;Relenable interrupts in the CFU
Q715 €9 04933 RET sResume pre—interrupt processing
04334 B
Q3000 x4
05001 H
Q5002 H Service device
Q5003 H
Q3004 H This routine performs the device interrupt servicing,
Q3003 H checking to see if the device described in the specified
0S00& H device table (address in DE) is actually interrupting,
Qo007 H and if so, inputs the character. Depending on which data character
09008 3 is input, this routine will either stack it in the input buffer
Q5009 H (shutting off the input stream if the buffer is nearly full),
Q5010 H or will suspend or resume the cutput to the device.
05011 H
05012 3 Entry parameters
05013 H
05014 H DE -> device table
05015 H
Q5018 Services$Device:
0718 210000 05017 LXI H,DT$StatussPort ;Check if this device is really
0719 19 Q5018 DAD il ;3 interrupting
071A 7E 05019 Mav A, M ;Get status port number
071B 321F07 05020 STA SD$StatussPort ;Store in instruction below
05021
O71E DB 05022 OR IN s Input status
Q5023 SD$StatussPort:
071F Q0 05024 (4] 3<-— Set up by instruction above
Q9025 H
0720 210300 05026 LXI H,DT$Input$Ready ;Check if status indicates data ready
0723 19 5027 DAD o]
0724 Aé 05028 ANA M 1Mask with input ready value
0725 C& 05029 RZ ;No, return to interrupt service
Q5030 ;Check if any errars have occurred
0726 210700 05031 LXI H,DT#DetectsError$fort ;Set up to read error status
0729 19 Q3032 nAaD 1] 3 interrupting
072A 7E Q5033 MOV A M ;0et status port number
Q72B 322F07 Q5024 STA SD$ErvorsFort ;Store in instruction below
05035
072E DB 05036 ju] IN s Input err